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ABSTRACT

In signal processing, “low-rank + sparse” is an important assumption when separating two

signals from their sum. Many applications, e.g., video foreground/background separation are well-

formulated by this assumption. In this work, with the “low-rank + sparse” assumption, we design

and evaluate an online algorithm, called practical recursive projected compressive sensing (prac-

ReProCS) for recovering a time sequence of sparse vectors St and a time sequence of dense vectors

Lt from their sum, Mt := St +Lt, when the Lt’s lie in a slowly changing low-dimensional subspace

of the full space.

In the first part of this work (Chapter 1-5), we study and discuss the prac-ReProCS algo-

rithm, the practical version of the original ReProCS algorithm. We apply prac-ReProCS to a key

application – video layering, where the goal is to separate a video sequence into a slowly chang-

ing background sequence and a sparse foreground sequence that consists of one or more moving

regions/objects on-the-fly. Via experiments we show that prac-ReProCS has significantly bet-

ter performance compared with other state-of-the-art robust-pca methods when applied to video

foreground-background separation.

In the second part of this work (Chapter 6), we study the problem of video denoising. We apply

prac-ReProCS to video denoising as a preprocessing step. We develop a novel approach to video

denoising that is based on the idea that many noisy or corrupted videos can be split into three

parts – the “low-rank laye”, the “sparse layer” and a small residual which is small and bounded.

We show using extensive experiments, layering-then-denoising is effective, especially for long videos

with small-sized images that those corrupted by general large variance noise or by large sparse

noise, e.g., salt-and-pepper noise.
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In the last part of this work (Chapter 7), we discuss an independent problem called logo detection

and propose a future research direction where prac-ReProCS can be combined with deep learning

solutions.
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CHAPTER 1. OVERVIEW

1.1 Introduction

In signal processing, there exists a typical task to recover a time sequence of sparse vectors St

and a time sequence of dense vectors Lt from their sum, Mt := St + Lt, when the Lt’s lie in a

low-rank subspace of Rn.

original foreground background

Figure 1.1: Example of foreground/background separation. First row: original sequence. Second

row: foreground sequence. Third row: background image.

A key example of this task is video layering where the goal is to separate a slowly changing

background from moving foreground objects/regions [94, 10] as shown in Figure.1.1. By convention,

we denote an image by a 1D vector St by stacking its columns in the pixel matrix (Figure.1.2).

With such representation, a matrix can denote a video with the columns being the image frames

(Figure.1.3). In videos that contain foreground/background content, the foreground layer usually

consists of one or more moving objects/persons/regions that move in a correlated fashion, i.e. it

is a sparse image sequence that often changes in a correlated fashion over time. In most static

camera videos, the background images do not change much over time and hence the background
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Figure 1.2: Example: stack the columns to form a matrix

Figure 1.3: Example: representation of a video

image sequence is well modeled as lying in a fixed or slowly-changing low-dimensional subspace of

Rn [101, 10]. An extreme example is when the background is completely static which results in

a rank-1 background matrix [L1, L2, · · · , Lt] since all Lt’s are identical. Moreover the changes are

typically global, e.g. due to lighting variations, and hence modeling it as a dense image sequence

is valid too [10].

The magnitude of the entries of Lt could be larger, roughly equal or smaller than that of the

nonzero entries of St.

The above video layering problem can be interpreted as one of online/recursive sparse recovery

from potentially large but structured noise. In this case, St is the quantity of interest and Lt is

the potentially large but structured low-dimensional noise. The related applications are automatic

video surveillance, tracking moving objects, or video conferencing. Alternatively it can be posed
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as a recursive/online robust principal components analysis (PCA) problem. In this case Lt, or in

fact, the subspace in which it lies, is the quantity of interest while St is the outlier, and a typical

application is video background editing.

The task of recovering signls St and Lt from Mt := St+Lt can be extended to the undersampled

case, Mt := ASt +BLt. Applications where this problem occurs include solving the video layering

problem from compressive video measurements, e.g., those acquired using a single-pixel camera;

online detection of brain activation patterns from undersampled functional MRI (fMRI) sequences

(the “active” part of the brain forms the sparse image, while the rest of the brain which does

not change much over time forms the low-dimensional part). They can be formulated as Mt :=

ASt +BLt with B = A.

Separating two signals from their sum, or signal de-mixing, not only is an important task of

recovering the two source signals, but also an effective pre-processing step for many other tasks.

In computer vision, many algoritms including object detection and object tracking, have a more

robust performance if the given image/video is firstly layered and the algorithm is performed

on the foreground mask [93]. Another application where we found layering-first is effective is

video denoising. Specifically, if an image frame in a video is corrupted by some noise Wt, i.e.,

Mt := St + Lt + Wt where St and Lt are sparse and low-dimensional respectively as described

before, the process of layering Mt into two layers actually helps removing the Wt. We dissuss this

later in the chapter on video denoising.

1.2 Notation

For a set T ⊆ {1, 2, · · ·n}, we use |T | to denote its cardinality; and we use T c to denote its

complement, i.e. T c := {i ∈ {1, 2, . . . n} : i /∈ T}. The symbols ∪,∩, \ denote set union set

intersection and set difference respectively (recall T1 \ T2 := T1 ∩ T c2 ). For a vector v, vi denotes

the ith entry of v and vT denotes a vector consisting of the entries of v indexed by T . We use ‖v‖p

to denote the `p norm of v. The support of v, supp(v), is the set of indices at which v is nonzero,

supp(v) := {i : vi 6= 0}. We say that v is s-sparse if |supp(v)| ≤ s.
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For a matrix B, B′ denotes its transpose, and B† denotes its pseudo-inverse. For a matrix with

linearly independent columns, B† = (B′B)−1B′. The notation [.] denotes an empty matrix. We

use I to denote an identity matrix. For an m×n matrix B and an index set T ⊆ {1, 2, . . . n}, BT is

the sub-matrix of B containing columns with indices in the set T . Notice that BT = BIT . We use

B \ BT to denote BT c . Given another matrix B2 of size m × n2, [B B2] constructs a new matrix

by concatenating matrices B and B2 in horizontal direction. Thus, [(B \BT ) B2] = [BT c B2]. We

use the notation B
SV D
= UΣV ′ to denote the singular value decomposition (SVD) of B with the

diagonal entries of Σ being arranged in non-decreasing order.

The interval notation [t1, t2] := {t1, t1 + 1, · · · , t2} and similarly the matrix [Lt1 , . . . Lt2 ] :=

[Lt1 , Lt1+1, · · · , Lt2 ]

Definition 1.2.1 The s-restricted isometry constant (RIC) [8], δs, for an n×m matrix Ψ is the

smallest real number satisfying (1 − δs)‖x‖22 ≤ ‖ΨTx‖22 ≤ (1 + δs)‖x‖22 for all sets T with |T | ≤ s

and all real vectors x of length |T |.

Definition 1.2.2 For a matrix M ,

• range(M) denotes the subspace spanned by the columns of M .

• M is a basis matrix if M ′M = I.

• The notation Q = basis(range(M)), or Q = basis(M) for short, means that Q is a basis

matrix for range(M) i.e. Q satisfies Q′Q = I and range(Q) = range(M).

Definition 1.2.3

• The b% left singular values’ set of a matrix M is the smallest set of indices of its singular

values that contains at least b% of the total singular values’ energy. In other words, if M
SV D
=

UΣV ′, it is the smallest set T such that
∑

i∈T (Σ)2
i,i ≥ b

100

∑n
i=1(Σ)2

i,i.

• The corresponding matrix of left singular vectors, UT , is referred to as the b% left singular

vectors’ matrix.
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• The notation [Q,Σ] = approx-basis(M, b%) means that Q is the b% left singular vectors’

matrix for M and Σ is the diagonal matrix with diagonal entries equal to the b% left singular

values’ set.

• The notation Q = approx-basis(M, r) means that Q contains the left singular vectors of M

corresponding to its r largest singular values. This also sometimes referred to as: Q contains

the r top singular vectors of M .

1.3 Dissertation outline

The remainder of this work is organized as follows:

Chapter 2 presents background knowledge for the studied problem, including a brief introduction

of related work and mathematical preliminaries for sparse recovery and compressive sensing.

Chapter 3 introduces the definition of our problem and the three basic assumptions we proposed,

which basically require the subspace is slowy-changing and dense, and the support size is small and

at each time there should be some change and the change is small.

Chapter 4 formally discusses the main algorithm, prac-ReProCS we developed for separating

two signals from their sum. We firstly introduce the basic algorithm which iteratively performs

sparse recovery and orthogonal projection. Next we discuss methods to utilize the slow support

change and improve support estimation. For subspace update, we introduce two schemes which are

simple recursive-PCA and projection-PCA. We conclude the chapter by analyzing the compressive

case.

Chapter 5 demonstrates the simulation results and draws conclusions for the prac-ReProCS

algorithm. Specically, we firstly describe our method to verifying the model assumptions and

the results show that they are valid for real applications such as video foreground/background

separation. Next we introduce the experiments for performance comparison. The experiments

were with simulated data, partly simulated data and real video data, and all demonstrated that

prac-ReProCS has significantly better performance than other compared algorithms.
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Chapter 6 starts a new discussion on video denoising, which can be seen as an extended applica-

tion of prac-ReProCS. We focus on explaining why the idea of laying-first can help in a traditional

video denoising task and introduce our ReProCS-based Layering Denoising (ReLD) approach. The

extensive experiments show that ReLD is most powerful for videos containing small-sized images

and for videos with very large noise.

Chapter 7 concludes this work by the discusson of potential applications of prac-ReProCS and

an independent project on logo detection which was done at Adobe Research as an intern project.

We demonstrate the experimental results we have obtained and propose a promising future work

direction, which tries to combine prac-ReProCS with deep learning approaches to make the current

model become fully automatic.
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CHAPTER 2. RELATED WORK AND MATHEMATICAL

PRELIMINARIES

2.1 Brief review of related work

Most high dimensional data often approximately lie in a lower dimensional subspace. Principal

components’ analysis (PCA) is a widely used dimension reduction technique that finds a small

number of orthogonal basis vectors (principal components), along which most of the variability of

the dataset lies. For a given dimension, r, PCA finds the r-dimensional subspace that minimizes

the mean squared error between data vectors and their projections into this subspace [39]. It is

well known that PCA is very sensitive to outliers. Computing the PCs in the presence of outliers is

called robust PCA. Solving the robust PCA problem recursively as more data comes in is referred

to as online or recursive robust PCA. “Outlier” is a loosely defined term that usually refers to

any corruption that is not small compared to the true signal (or data vector) and that occurs only

occasionally. As suggested in [102], an outlier can be nicely modeled as a sparse vector.

In the last few decades, there has been a large amount of work on robust PCA, e.g. [94, 82,

113, 105, 62], and recursive robust PCA e.g. [3, 87, 51]. In most of these works, either the locations

of the missing/corruped data points are assumed known [3] (not a practical assumption); or they

first detect the corrupted data points and then replace their values using nearby values [87]; or

weight each data point in proportion to its reliability (thus soft-detecting and down-weighting the

likely outliers) [94, 51]; or just remove the entire outlier vector [105, 62]. Detecting or soft-detecting

outliers (St) as in [87, 94, 51] is easy when the outlier magnitude is large, but not when it is of the

same order or smaller than that of the Lt’s.

PCP-based approaches:

In a series of recent works [10, 13], a new and elegant solution to robust PCA called Principal

Components’ Pursuit (PCP) has been proposed, that does not require a two step outlier location
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detection/correction process and also does not throw out the entire vector. It redefines batch

robust PCA as a problem of separating a low rank matrix, Lt := [L1, . . . , Lt], from a sparse

matrix, St := [S1, . . . , St], using the measurement matrix, Mt := [M1, . . . ,Mt] = Lt + St. Other

recent works that also study batch algorithms for recovering a sparse St and a low-rank Lt from

Mt := Lt +St or from undersampled measurements include [63, 12, 38, 97, 79, 36, 60, 100, 28, 92].

It was shown in [10] that by solving PCP:

min
L,S
‖L‖∗ + λ‖S‖1 subject to L+ S =Mt (2.1)

one can recover Lt and St exactly, provided that (a) Lt is “dense”; (b) any element of the matrix

St is nonzero w.p. %, and zero w.p. 1− %, independent of all others (in particular, this means that

the support sets of the different St’s are independent over time); and (c) the rank of Lt and the

support size of St are small enough. Here ‖A‖∗ is the nuclear norm of a matrix A (sum of singular

values of A) while ‖A‖1 is the `1 norm of A seen as a long vector.

Specifically, (a) and (b) are required to avoid the identifiability issue – Lt should not be sparse

and St not low-rank. Write the singular value decomposition of Lt (of size n1 × n2) as Lt =

UΣV∗ =
∑r

i=1 σiUiV
∗
i , where r is the rank of the matrix, σi, . . . , σr are the positive singular values,

and U = [U1, . . . , Ur] , V = [V1, . . . , Vr] are the matrices of left and right-singular vectors. It is

required that the singular vectors are reasonably spreadout by restricting

maxi‖U∗ei‖2 ≤
µr

n1
,maxi‖V∗ei‖2 ≤

µr

n2
, (2.2)

and

‖UV∗‖∞ ≤
√

µr

n1n2
(2.3)

for a given µ.

PCP tries to minimize the rank of L and sparsity of S with a convex approach and it is solvable

in polynomial time. The art here is that the nuclear norm serves as a convex surrogate for the rank

of a matrix and the `1 norm of a vectorized matrix serves as a convex surrogate for the support

size.
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Non-convex approaches:

It has been analyzed that the number of iteratons needed for a convex program solver to get

to within an ε ball of the true solution of the convex program is O(1
ε ), which makes the typical

complexity for a PCP solver O(nd
2

ε ) (suppose the matrix is of size n×d) [66]. To address this issue,

more recent non-convex solutions were proposed which are provably mush faster. Two representing

solutions are:

- Alternating-Projection (AltProj) [66]:

AltProj tries to find a matrix L that lies in the intersection of two sets: Lset = {set of rank-r matrics}

and Sset = {Mt − S,where S is a sparse matrix}. The algorithms alternately projects onto these

two non-convex sets, while appropriately relaxing the rank and the sparsity levels. It needs time

of order O(ndr2log(1/ε)) to achieve the error ‖L̂ − L‖F ≤ ε and ‖Ŝ − S‖∞ ≤ ε provided that (a)

U ,V are µ-incoherent and (b) each row and column of S have at most α fraction of non-zero entries

such that α ≤ 1
cµ2r

. Here U ,V are the matrices of left and right-singular vectors of L.

- Projected Gradient Descent (RPCA-GD) [108]:

RPCA-GD needs time of order O(ndrlog(1/ε)) to achieve the error ‖L̂ − L‖F ≤ εσmax(L) pro-

vided provided that (a) U ,V are µ-incoherent and (b) each row and column of S have at most α

fraction of non-zero entries such that α ≤ c
µr . Here U ,V are the matrices of left and right-singular

vectors of L. It also provided the solution for the robust PCA problem with partial observations.

Online RPCA. Notice that most robust-pca based applications e.g., video foreground/background

separation require an online solution. A batch solution would need a long delay; and would also be

much slower and more memory-intensive than a recursive solution. Moreover, the assumption that

the foreground support is independent over time (required by PCP) is not usually valid. To address

these issues, in the conference versions of the work [71, 72], a recursive solution called Recursive

Projected Compressive Sensing (ReProCS) was introduced. In recent work [74, 73, 1], performance

guarantees for ReProCS have been obtained. Under mild assumptions (denseness, slow enough

subspace change of `t and “some” support change at least every h frames of st), it has been shown

that, with high probability (w.h.p.), ReProCS can exactly recover the support set of St at all times;
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and the reconstruction errors of both St and Lt are upper bounded by a time invariant and small

value. The work of [74, 73] contains a partial result while [1] is a complete correctness result.

Other very recent work on recursive / online robust PCA includes [33, 25, 24, 61, 59]. Some

other related work includes work that uses structured sparsity models, e.g. [43]. For our problem,

if it is known that the sparse vector consists of one or a few connected regions, these ideas could

be incorporated into our algorithm as well. On the other hand, the advantage of the current

approach that only uses sparsity is that it works both for the case of a few connected regions as

well as for the case of multiple small sized moving objects, e.g. see the airport video results at

http://www.ece.iastate.edu/~chenlu/ReProCS/Video_ReProCS.htm.

2.2 Mathematical preliminaries

We provided the basic compressive sensing result here as needed in our main algorithm.

2.2.1 Compressive sensing results

Compressive sensing is a signal processing technique for efficiently acquiring and reconstructing

a signal, by finding solutions to undertermined linear systems. Through optimization, the sparsity

of a signal can be explited to recover it from only a few samples. It is required that the signal must

be sparse in some domain.

Theorem 2.2.1 [7] For a vector x, use xs to denote a vector with all but the s-largest entries set

to zero. Suppose we observe

y := Ψx. (2.4)

Let x̂ be the solution to following problem

min
x
‖x‖1 subject to y = Ψx (2.5)

Assume that δ2s <
√

2− 1, then x̂ obeys

‖x̂− x‖1 ≤ C0‖x− xs‖1 (2.6)

http://www.ece.iastate.edu/~chenlu/ReProCS/Video_ReProCS.htm
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and

‖x̂− x‖2 ≤ C0s
− 1

2 ‖x− xs‖1 (2.7)

for some constant C0. In particular, if x is s-sparse, the recovery is exact.

Theorem 2.2.2 [7]

Suppose we observe

y := Ψx+ z (2.8)

with z being the noise. Let x̂ be the solution to following problem

min
x
‖x‖1 subject to ‖y −Ψx‖2 ≤ ξ. (2.9)

Assume that x is s-sparse, ‖z‖2 ≤ ξ and δ2s(Ψ) < b(
√

2− 1) with 0 ≤ b < 1. Then the solution of

(2.9) obeys

‖x̂− x‖2 ≤ C1ξ (2.10)

for some constant C1

2.2.2 Modified compressive sensing

Modified-CS [96] was a solution to the problem of sparse reconstruction with partial knowledge

of the support. Let the “known” support be T . Modified-CS tries to find a signal that is sparses

outside of the set T among all signals satisfying the data constraint.

Specifically, modified-CS solves

minx‖xT c‖1 s.t. ‖y −Ψx‖2 ≤ ξ. (2.11)

For recursively reconstructing a time sequence of sparse signals, the support estimate from

the previous time, N̂t−1 can be incorparated as a prior for the current support. By doing this,

modified-CS is often formulated by solving

minx‖xT c‖1 s.t. ‖y −Ψx‖2 ≤ ξ, T̂ = N̂t−1. (2.12)
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In fact, modified-CS belongs to a broader idea called weighted-`1 minimization where the entries

of x use two different weights, i.e.,

minxλ‖xT ‖1 + ‖xT c‖1 s.t. ‖yt − Φtx‖2 ≤ ξ (2.13)

We can see that modified-CS is a special case by setting the weight on T to 0.
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CHAPTER 3. PROBLEM DEFINITION AND ASSUMPTIONS

We suppose that, the measurement vector at time t, Mt, is an n dimensional vector which can

be decomposed as

Mt := St + Lt. (3.1)

Let Tt denote the support set of St, i.e.,

Tt := supp(St) = {i : (St)i 6= 0}.

We assume that St and Lt satisfy the assumptions given below in the next three subsections.

Suppose that an initial training sequence which does not contain the sparse components is available,

i.e. we are given Mtrain = [Mt; 1 ≤ t ≤ ttrain] with Mt = Lt. This is used to get an initial estimate

of the subspace in which the Lt’s lie. If an initial sequence without St’s is not available, one can use

a batch robust PCA algorithm to get the initial subspace estimate as long as the initial sequence

satisfies its required assumptions. At each t > ttrain, the goal is to recursively estimate St and

Lt and the subspace in which Lt lies. By “recursively” we mean: use Ŝt−1, L̂t−1 and the previous

subspace estimate to estimate St and Lt.

The magnitude of the entries of Lt may be small, of the same order, or large compared to that

of the nonzero entries of St. In applications where St is the signal of interest, the case when ‖Lt‖2

is of the same order or larger than ‖St‖2 is the difficult case.

A key application where the above problem occurs is in separating a video sequence into back-

ground and foreground layers. Let Imt denote the image at time t, Ft denote the foreground image

at t and Bt the background image at t, all arranged as 1-D vectors. Then, the image sequence

satisfies

(Imt)i =

 (Ft)i if i ∈ supp(Ft)

(Bt)i if i /∈ supp(Ft)
(3.2)
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In fMRI, Ft is the sparse active region image while Bt is the background brain image. In both

cases, it is fair to assume that an initial background-only training sequence is available. For video

this means there are no moving objects/regions in the foreground. For fMRI, this means some

frames are captured without providing any stimulus to the subject.

Let µ denote the empirical mean of the training background images. If we let Lt := Bt − µ,

Mt := Imt − µ, Tt := supp(Ft), and

(St)Tt := (Ft −Bt)Tt , (St)T ct := 0,

then, clearly, Mt = St + Lt. Once we get the estimates L̂t, Ŝt, we can also recover the foreground

and background as

B̂t = L̂t + µ, T̂t = supp(Ŝt), (F̂t)T̂t = (Imt)T̂t , (F̂t)T̂ ct
= 0.

3.1 Slowly changing low-dimensional subspace change

We assume that for τ large enough, any τ length subsequence of the Lt’s lies in a subspace of

Rn of dimension less than min(τ, n), and usually much less than min(τ, n). In other words, for τ

large enough, maxt rank([Lt−τ+1, . . . Lt])� min(τ, n). Also, this subspace is either fixed or changes

slowly over time.

One way to model this is as follows [74]. Let Lt = Ptat where Pt is an n× rt basis matrix with

rt � n that is piecewise constant with time, i.e. Pt = P(j) for all t ∈ [tj , tj+1) and P(j) changes as

P(j) = [(P(j−1)Rj \ P(j),old), P(j),new]

where P(j),new and P(j),old are basis matrices of size n × cj,new and n × cj,old respectively with

P ′(j),newP(j−1) = 0 and Rj is a rotation matrix. Moreover, (a) 0 ≤
∑j

i=1(ci,new − ci,old) ≤ cdif; (b)

0 ≤ cj,new ≤ cmax < r0; (c) (tj+1 − tj)� r0 + cdif; and (d) there are a total of J change times with

J � (n− r0 − cdif)/cmax.

Clearly, (a) implies that rt ≤ r0+cdif := rmax and (d) implies that rmax+Jcmax � n. This, along

with (b) and (c), helps to ensure that for any τ > rmax + cmax, rt,τ := maxt rank([Lt−τ+1, . . . Lt]) <

min(τ, n), and for τ � rmax + cmax, rt,τ � min(τ, n)
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Notice first that (c) implies that (tj+1−tj)� rmax. Also, (b) implies that rank([Ltj , . . . Ltj+k−1]) ≤

rmax + (k − 1)cmax. First consider the case when both t − τ + 1 and t lie in [tj , tj+1 − 1]. In this

case, rt,τ ≤ rmax for any τ . Thus for any tj+1 − tj > τ � rmax, rt,τ � min(τ, n). Next consider

the case when t − τ + 1 ∈ [tj , tj+1 − 1] and t ∈ [tj+1, tj+2 − 1]. In this case, rt,τ ≤ rmax + cmax.

Thus, for any tj+2 − tj > τ � rmax + cmax, rt,τ � min(τ, n). Finally consider the case when

t−τ+1 ∈ [tj , tj+1−1] and t ∈ [tj+k+1, tj+k+2−1] for a 0 < k < J−1. In this case, τ can be rewrit-

ten as τ = (tj+k+1− tj+1) + τ1 + τ2 with τ1 := tj+1− (t− τ + 1) and τ2 := t− (tj+k+1− 1). Clearly,

rt,τ ≤ (rmax +(k−1)cmax)+min(τ1, cmax)+min(τ2, cmax) < krmax +min(τ1, cmax)+min(τ2, cmax)�

(tj+k+2 − tj+1) + min(τ1, cmax) + min(τ2, cmax) ≤ (tj+k+2 − tj+1) + τ1 + τ2 = τ . Moreover,

rt,τ ≤ rmax +(k+1)cmax ≤ rmax +Jcmax � n. Thus, in this case again for any τ , rt,τ � min(τ, n).

By slow subspace change, we mean that: for t ∈ [tj , tj+1), ‖(I − P(j−1)P
′
(j−1))Lt‖2 is initially

small and increases gradually. In particular, we assume that, for t ∈ [tj , tj + α),

‖(I − P(j−1)P
′
(j−1))Lt‖2 ≤ γnew � min(‖Lt‖2, ‖St‖2)

and increases gradually after tj + α. One model for “increases gradually” is as given in [74, Sec

III-B]. Nothing in this work requires the specific model and hence we do not repeat it here.

The above piecewise constant subspace change model is a simplified model for what typically

happens in practice. In most cases, Pt changes a little at each t in such a way that the low-

dimensional assumption approximately holds. If we try to model this, it would result in a non-

stationary model that is difficult to precisely define or to verify (it would require multiple video

sequences of the same type to verify) 1.

Since background images typically change only a little over time (except in case of a camera

viewpoint change or a scene change), it is valid to model the mean-subtracted background image

sequence as lying in a slowly changing low-dimensional subspace. We verify this assumption in Sec

5.1.

1With letting at be a zero mean random variable with a covariance matrix that is constant for sub-intervals within
[tj , tj+1), the above model is a piecewise wide sense stationary approximation to the nonstationary model.
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3.2 Denseness assumption

To state the denseness assumption, we first need to define the denseness coefficient. This is a

simplification of the one introduced in [74].

Definition 3.2.1 (denseness coefficient) For a matrix or a vector B, define

κs(B) = κs(range(B)) := max
|T |≤s

‖IT ′basis(B)‖2 (3.3)

where ‖.‖2 is the vector or matrix 2-norm. Recall that basis(B) is short for basis(range(B)). Sim-

ilarly κs(B) is short for κs(range(B)). Notice that κs(B) is a property of the subspace range(B).

Note also that κs(B) is a non-decreasing function of s and of rank(B).

We assume that the subspace spanned by the Lt’s is dense, i.e.

κ2s(P(j)) = κ2s([Ltj , . . . Ltj+1−1]) ≤ κ∗

for a κ∗ significantly smaller than one. Moreover, a similar assumption holds for P(j),new with

a tighter bound: κ2s(P(j),new) ≤ κnew < κ∗. This assumption is similar to one of the denseness

assumptions used in [11, 10]. In [10], a bound is assumed on κ1(U) and κ1(V ) where U and V are

the matrices containing the left and right singular vectors of the entire matrix, [L1, L2 . . . Lt]; and

a tighter bound is assumed on maxi,j |(UV ′)i,j |. In our notation, U = [P(0), P(1),new, . . . P(J),new].

The following lemma, proved in [74], relates the RIC of I − PP ′, when P is a basis matrix,

to the denseness coefficient for range(P ). Notice that I − PP ′ is an n × n matrix that has rank

(n− rank(P )) and so it cannot be inverted.

Lemma 3.2.2 For a basis matrix, P ,

δs(I − PP ′) = κs(P )2

Thus, the denseness assumption implies that the RIC of the matrix (I − P(j)P
′
(j)) is small. Using

any of the RIC based sparse recovery results, e.g. [7], this ensures that for t ∈ [tj , tj+1), s-sparse

vectors St are recoverable from (I − P(j)P
′
(j))Mt = (I − P(j)P

′
(j))St by `1 minimization.
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Very often, the background images primarily change due to lighting changes (in case of indoor

sequences) or due to moving waters or moving leaves (in case of many outdoor sequences) [10, 74].

All of these result in global changes and hence it is valid to assume that the subspace spanned by

the background image sequences is dense.

3.3 Small support size, some support change, small support change

assumption on St

Let the sets of support additions and removals be

∆t := Tt \ Tt−1, ∆e,t := Tt−1 \ Tt.

(1) We assume that

|Tt|+ min(|Tt|, |∆t|+ |∆e,t|) ≤ s+ s∆ where s∆ � s

In particular, this implies that we either need |Tt| ≤ s and |∆t| + |∆e,t| ≤ s∆ (St is sparse with

support size at most s, and its support changes slowly) or, in cases when the change |∆t| + |∆e,t|

is large, we need |Tt| ≤ 0.5(s+ s∆) (need a tighter bound on the support size).

(2) We also assume that there is some support change every few frames, i.e. at least once every

h frames, |∆t| > s∆,min. Practically, this is needed to ensure that at least some of the background

behind the foreground is visible so that the changes to the background subspace can be estimated.

In video applications, foreground images often consist of one or more moving objects/people/regions

and hence are sparse. Also, typically the objects are not static, i.e. there is some support change

at least every few frames. On the other hand, since the objects usually do not move very fast,

slow support change is also valid most of the time. The time when the support change is almost

comparable to the support size is usually when the object is entering or leaving the image, but

these are the exactly the times when the object’s support size is itself small (being smaller than

0.5(s+ s∆) is a valid).
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CHAPTER 4. PRAC-REPROCS: PRACTICAL REPROCS ALGORITHM

We first develop a practical algorithm based on the basic ReProCS idea from earlier work

[74]. Then we discuss how the sparse recovery and support estimation steps can be improved. The

complete algorithm is summarized in Algorithm 1. Finally we discuss an alternate subspace update

procedure in Sec 4.4.

4.1 Basic algorithm

We use Ŝt, T̂t, L̂t to denote estimates of St, its support, Tt, and Lt respectively; and we use P̂t

to denote the basis matrix for the estimated subspace of Lt at time t. Also, let

Φt := (I − P̂t−1P̂
′
t−1) (4.1)

Given the initial training sequence which does not contain the sparse components, Mtrain =

[L1, L2, . . . Lttrain ] we compute P̂0 as an approximate basis forMtrain, i.e. P̂0 = approx-basis(Mtrain, b%).

Let r̂ = rank(P̂0). We need to compute an approximate basis because for real data, the Lt’s are

only approximately low-dimensional. We use b% = 95% or b% = 99.99% depending on whether

the low-rank part is approximately low-rank or almost exactly low-rank. After this, at each time t,

ReProCS involves 4 steps: (a) Perpendicular Projection; (b) Sparse Recovery (recover Tt and St);

(c) Recover Lt; (d) Subspace Update (update P̂t).

Perpendicular Projection. In the first step, at time t, we project the measurement vector,

Mt, into the space orthogonal to range(P̂t−1) to get the projected measurement vector,

yt := ΦtMt. (4.2)

Sparse Recovery (Recover Tt and St). With the above projection, yt can be rewritten as

yt = ΦtSt + βt where βt := ΦtLt (4.3)
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Because of the slow subspace change assumption, projecting orthogonal to range(P̂t−1) nullifies

most of the contribution of Lt and hence βt can be interpreted as small “noise”. We explain this

in detail in APPENDIX .

Thus, the problem of recovering St from yt becomes a traditional noisy sparse recovery/CS

problem. Notice that, since the n× n projection matrix, Φt, has rank n− rank(P̂t−1), therefore yt

has only this many “effective” measurements, even though its length is n. To recover St from yt,

one can use `1 minimization [16, 7], or any of the greedy or iterative thresholding algorithms from

literature. In this work we use `1 minimization: we solve

minx‖x‖1 s.t. ‖yt − Φtx‖2 ≤ ξ (4.4)

and denote its solution by Ŝt,cs. By the denseness assumption, Pt−1 is dense. Since P̂t−1 approx-

imates it, this is true for P̂t−1 as well [74, Lemma 6.6]. Thus, by Lemma 3.2.2, the RIC of Φt

is small enough. Using [7, Theorem 1], this and the fact that βt is small ensures that St can be

accurately recovered from yt. The constraint ξ used in the minimization should equal ‖βt‖2 or its

upper bound. Since βt is unknown we set ξ = ‖β̂t‖2 where β̂t := ΦtL̂t−1.

By thresholding on Ŝt,cs to get an estimate of its support followed by computing a least squares

(LS) estimate of St on the estimated support and setting it to zero everywhere else, we can get

a more accurate estimate, Ŝt, as suggested in [9]. We discuss better support estimation and its

parameter setting in Sec 4.3.

Recover Lt. The estimate Ŝt is used to estimate Lt as L̂t = Mt− Ŝt. Thus, if St is recovered

accurately, so will Lt.

Subspace Update (Update P̂t). Within a short delay after every subspace change time, one

needs to update the subspace estimate, P̂t. To do this in a provably reliable fashion, we introduced

the projection PCA (p-PCA) algorithm in [74]. The algorithm studied there used knowledge of

the subspace change times tj and of the number of new directions cj,new. Let P̂(j−1) denote the

final estimate of a basis for the span of P(j−1). It is assumed that the delay between change times

is large enough so that P̂(j−1) is an accurate estimate. At t = tj + α − 1, p-PCA gets the first

estimate of the new directions, P̂(j),new,1, by projecting the last α L̂t’s perpendicular to P̂(j−1)
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followed by computing the cj,new top left singular vectors of the projected data matrix. It then

updates the subspace estimate as P̂t = [P̂(j−1), P̂(j),new,1]. The same procedure is repeated at every

t = tj + kα− 1 for k = 2, 3, . . .K and each time we update the subspace as P̂t = [P̂(j−1), P̂(j),new,k].

Here K is chosen so that the subspace estimation error decays down to a small enough value within

K p-PCA steps.

In this paper, we design a practical version of p-PCA which does not need knowledge of tj or

cj,new. This is summarized in Algorithm 1. The key idea is as follows. We let σ̂min be the r̂th

largest singular value of the training dataset. This serves as the noise threshold for approximately

low rank data. We split projection PCA into two phases: “detect subspace change” and “p-PCA”.

We are in the detect phase when the previous subspace has been accurately estimated. Denote

the basis matrix for this subspace by P̂(j−1). We detect the subspace change as follows. Every α

frames, we project the last α L̂t’s perpendicular to P̂(j−1) and compute the SVD of the resulting

matrix. If there are any singular values above σ̂min, this means that the subspace has changed. At

this point, we enter the “p-PCA” phase. In this phase, we repeat the K p-PCA steps described

above with the following change: we estimate cj,new as the number of singular values above σ̂min,

but clipped at dα/3e (i.e. if the number is more than dα/3e then we clip it to dα/3e). We stop

either when the stopping criterion given in step 4(b)iv is achieved (k ≥ Kmin and the projection of

L̂t along P̂new,k is not too different from that along P̂new,k) or when k ≥ Kmax.

For the above algorithm, with theoretically motivated choices of algorithm parameters, under

the assumptions from chapter 3, it is possible to show that, w.h.p., the support of St is exactly

recovered, the subspace of Lt’s is accurately recovered within a finite delay of the change time. We

provide a brief overview of the proof from [74, 1] in APPENDIX that helps explain why the above

approach works.

Remark 4.1.1 The p-PCA algorithm only allows addition of new directions. If the goal is to es-

timate the span of [L1, . . . Lt], then this is what is needed. If the goal is sparse recovery, then one

can get a smaller rank estimate of P̂t by also including a step to delete the span of the removed

directions, P(j),old. This will result in more “effective” measurements available for the sparse re-
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covery step and hence possibly in improved performance. The simplest way to do this is to do one

simple PCA step every some frames. In our experiments, this did not help much though. A provably

accurate solution is described in [74, Sec VII].

Remark 4.1.2 The p-PCA algorithm works on small batches of α frames. This can be made fully

recursive if we compute the SVD of (I − P̂(j−1)P̂
′
(j−1))[L̂t−α+1, . . . L̂t] using the incremental SVD

(inc-SVD) procedure summarized in Algorithm 2 [3] for one frame at a time. As explained in

[3] and references therein, we can get the left singular vectors and singular values of any matrix

M = [M1,M2, . . .Mα] recursively by starting with P̂ = [.], Σ̂ = [.] and calling [P̂ , Σ̂] = inc-SVD(P̂ ,

Σ̂, Mi) for every column i or for short batches of columns of size of α/k. Since we use α = 20

which is a small value, the use of incremental SVD does not speed up the algorithm in practice and

hence we do not report results using it.

4.2 Exploiting slow support change when valid

[74, 73] used `1 minimization followed by thresholding and LS for sparse recovery. However

if slow support change holds, one can replace simple `1 minimization by modified-CS [96] which

requires fewer measurements for exact/accurate recovery as long as the previous support estimate,

T̂t−1, is an accurate enough predictor of the current support, Tt. In our application, T̂t−1 is likely

to contain a significant number of extras and in this case, a better idea is to solve the following

weighted `1 problem [48, 27]

minxλ‖xT ‖1 + ‖xT c‖1 s.t. ‖yt − Φtx‖2 ≤ ξ, T := T̂t−1 (4.5)

with λ < 1 (modified-CS solves the above with λ = 0). Denote its solution by Ŝt,cs. One way to

pick λ is to let it be proportional to the estimate of the percentage of extras in T̂t−1. If slow support

change does not hold, the previous support estimate is not a good predictor of the current support.

In this case, doing the above is a bad idea and one should instead solve simple `1, i.e. solve (4.5)

with λ = 1. As explained in [27], if the support estimate contains at least 50% correct entries,

then weighted `1 is better than simple `1. We use the above criteria with true values replaced by



www.manaraa.com

22

Algorithm 1 Practical ReProCS-pPCA
Input: Mt; Output: T̂t, Ŝt, L̂t; Parameters: q, b, α,Kmin, Kmax. We used α = 20, Kmin = 3, Kmax = 10 in all experiments (α needs to only
be large compared to cmax); we used b = 95 for approximately low-rank data (all real videos and the lake video with simulated foreground) and
used b = 99.99 for almost exactly low rank data (simulated data); we used q = 1 whenever ‖St‖2 was of the same order or larger than ‖Lt‖2 (all
real videos and the lake video) and used q = 0.25 when it was much smaller (simulated data with small magnitude St).
Initialization

• [P̂0, Σ̂0]← approx-basis( 1√
ttrain

[M1, . . .Mttrain ], b%).

• Set r̂ ← rank(P̂0), σ̂min ← ((Σ̂0)r̂,r̂), t̂0 = ttrain, flag = detect

• Initialize P̂(ttrain) ← P̂0 and T̂t ← [.].

For t > ttrain do

1. Perpendicular Projection: compute yt ← ΦtMt with Φt ← I − P̂t−1P̂
′
t−1

2. Sparse Recovery (Recover St and Tt)

(a) If
|T̂t−2∩T̂t−1|
|T̂t−2|

< 0.5

i. Compute Ŝt,cs as the solution of (2(a)ii) with ξ = ‖ΦtL̂t−1‖2.

ii. T̂t ← Thresh(Ŝt,cs, ω) with ω = q
√
‖Mt‖2/n. Here T ← Thresh(x, ω) means that T = {i : |(x)i| ≥ ω}.

Else

i. Compute Ŝt,cs as the solution of (4.5) with T = T̂t−1, λ =
|T̂t−2\T̂t−1|
|T̂t−1|

, ξ = ‖ΦtL̂t−1‖2.

ii. T̂add ← Prune(Ŝt,cs, 1.4|T̂t−1|). Here T ← Prune(x, k) returns indices of the k largest magnitude elements of x.

iii. Ŝt,add ← LS(yt,Φt, T̂add). Here x̂← LS(y,A, T ) means that x̂T = (AT
′AT )−1AT

′y and x̂Tc = 0.

iv. T̂t ← Thresh(Ŝt,add, ω) with ω = q
√
‖Mt‖2/n.

(b) Ŝt ← LS(yt,Φt, T̂t)

3. Estimate Lt: L̂t ← Mt − Ŝt

4. Update P̂t: projection PCA

(a) If flag = detect and mod(t− t̂j + 1, α) = 0, (here mod(t, α) is the remainder when t is divided by α)

i. compute the SVD of 1√
α

(I − P̂(j−1)P̂
′
(j−1))[L̂t−α+1, . . . L̂t] and check if any singular values are above σ̂min

ii. if the above number is more than zero then set flag← pPCA, increment j ← j + 1, set t̂j ← t− α + 1, reset k ← 1

Else P̂t ← P̂t−1.

(b) If flag = pPCA and mod(t− t̂j + 1, α) = 0,

i. compute the SVD of 1√
α

(I − P̂(j−1)P̂
′
(j−1))[L̂t−α+1, . . . L̂t],

ii. let P̂j,new,k retain all its left singular vectors with singular values above σ̂min or all α/3 top left singular vectors whichever
is smaller,

iii. update P̂t ← [P̂(j−1) P̂j,new,k], increment k ← k + 1

iv. If k ≥ Kmin and
‖
∑t
t−α+1(P̂j,new,i−1P̂

′
j,new,i−1−P̂j,new,iP̂

′
j,new,i)Lt‖2

‖
∑t
t−α+1

P̂j,new,i−1P̂
′
j,new,i−1

Lt‖2
< 0.01 for i = k − 2, k − 1, k; or k = Kmax,

then K ← k, P̂(j) ← [P̂(j−1) P̂j,new,K ] and reset flag← detect.

Else P̂t ← P̂t−1.
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estimates. Thus, if |T̂t−2∩T̂t−1|
|T̂t−2|

> 0.5, then we solve (4.5) with λ = |T̂t−2\T̂t−1|
|T̂t−1|

, else we solve it with

λ = 1.

4.3 Improved support estimation

A simple way to estimate the support is by thresholding the solution of (4.5). This can be

improved by using the Add-LS-Del procedure for support and signal value estimation [96]. We

proceed as follows. First we compute the set T̂t,add by thresholding on Ŝt,cs in order to retain its k

largest magnitude entries. We then compute a LS estimate of St on T̂t,add while setting it to zero

everywhere else. As explained earlier, because of the LS step, Ŝt,add is a less biased estimate of St

than Ŝt,cs. We let k = 1.4|T̂t−1| to allow for a small increase in the support size from t− 1 to t. A

larger value of k also makes it more likely that elements of the set (Tt \ T̂t−1) are detected into the

support estimate1.

The final estimate of the support, T̂t, is obtained by thresholding on Ŝt,add using a threshold

ω. If ω is appropriately chosen, this step helps to delete some of the extra elements from T̂add

and this ensures that the size of T̂t does not keep increasing (unless the object’s size is increasing).

An LS estimate computed on T̂t gives us the final estimate of St, i.e. Ŝt = LS(yt, A, T̂t). We use

ω =
√
‖Mt‖2/n except in situations where ‖St‖ � ‖Lt‖ - in this case we use ω = 0.25

√
‖Mt‖2/n.

An alternate approach is to let ω be proportional to the noise magnitude seen by the `1 step, i.e.

to let ω = q‖β̂t‖∞, however this approach required different values of q for different experiments

(it is not possible to specify one q that works for all experiments).

The complete algorithm with all the above steps is summarized in Algorithm 1.

4.4 Simplifying subspace update: simple recursive PCA

Even the practical version of p-PCA needs to set Kmin and Kmax besides also setting b and α.

Thus, we also experiment with using PCA to replace p-PCA (it is difficult to prove a performance

1Due to the larger weight on the ‖x(T̂ct−1)‖1 term as compared to that on the ‖x(T̂t−1)‖1 term, the solution of (4.5)

is biased towards zero on T̂ ct−1 and thus the solution values along (Tt \ T̂t−1) are smaller than the true ones.
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Algorithm 2 [P̂ , Σ̂] = inc-SVD(P̂ , Σ̂, D)

1. set D‖,proj ← P̂ ′D and D⊥ ← (I − P̂ P̂ ′)D

2. compute QR decomposition of D⊥, i.e. D⊥
QR
= JK (here J is a basis matrix and K is an

upper triangular matrix)

3. compute the SVD:

[
Σ̂ D‖,proj
0 K

]
SV D
= P̃ Σ̃Ṽ ′

4. update P̂ ← [P̂ J ]P̃ and Σ̂← Σ̃

Note: As explained in [3], due to numerical errors, step 4 done too often can eventually result in

P̂ no longer being a basis matrix. This typically occurs when one tries to use inc-SVD at every

time t, i.e. when D is a column vector. This can be addressed using the modified Gram Schmidt

re-orthonormalization procedure whenever loss of orthogonality is detected [3].

guarantee with PCA but that does not necessarily mean that the algorithm itself will not work).

The simplest way to do this is to compute the top r̂ left singular vectors of [L̂1, L̂2, . . . L̂t] either at

each time t or every α frames. While this is simple, its complexity will keep increasing with time

t which is not desirable. Even if we use the last d frames instead of all past frames, d will still

need to be large compared to r̂ to get an accurate estimate. To address this issue, we can use the

recursive PCA (incremental SVD) algorithm given in Algorithm 2. We give the complete algorithm

that uses this and a rank r̂ truncation step every d frames (motivated by [3]) in Algorithm 3.

4.5 Compressive Measurements: Recovering St

Consider the problem of recovering St from

Mt := ASt +BLt

when A and B are m×n and m×n2 matrices, St is an n length vector and Lt is an n2 length vector.

In general m can be larger, equal or smaller than n or n2. In the compressive measurements’ case,

m < n. To specify the assumptions needed in this case, we need to define the basis matrix for

range(BP(j)) and we need to define a generalization of the denseness coefficient.

Definition 4.5.1 Let Qj := basis(BP(j)) and let Qj,new := basis((I −Qj−1Q
′
j−1)BP(j)).
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Algorithm 3 Practical ReProCS-Recursive-PCA

Input: Mt; Output: T̂t, Ŝt, L̂t; Parameters: q, b, α, set α = 20 in all experiments, set q, b as

explained in Algorithm 1.

Initialization: [P̂0,Σ0] ← approx-basis([M1, . . .Mttrain ], b%), r̂ ← rank(P̂0), d ← 3r̂, initialize

P̂tmp ← P̂0, Σ̂tmp ← Σ0, P̂(ttrain) ← P̂0 and T̂t ← [.]. For t > ttrain do

1. Perpendicular Projection: do as in Algorithm 1.

2. Sparse Recovery: do as in Algorithm 1.

3. Estimate Lt: do as in Algorithm 1.

4. Update P̂t: recursive PCA

(a) If mod(t− ttrain, α) = 0,

i. [P̂tmp, Σ̂tmp] ← inc-SVD(P̂tmp, Σ̂tmp, [L̂t−α+1, . . . L̂t]) where inc-SVD is given in

Algorithm 2.

ii. P̂t ← (P̂tmp)1:r̂

Else P̂t ← P̂t−1.

(b) If mod(t− ttrain, d) = 0,

i. P̂tmp ← (P̂tmp)1:r̂ and Σ̂tmp ← (Σ̂tmp)1:r̂,1:r̂

Definition 4.5.2 For a matrix or a vector M , define

κs,A(M) = κs,A(range(M)) := max
|T |≤s

‖AT ′basis(M)‖2 (4.6)

where ‖.‖2 is the vector or matrix 2-norm. This quantifies the incoherence between the subspace

spanned by any set of s columns of A and the range of M .

We assume the following.

1. Lt and St satisfy the assumptions of Sec 3.1, 3.3.

2. The matrix A satisfies the restricted isometry property [7], i.e. δs(A) ≤ δ∗ � 1.

3. The denseness assumption is replaced by: κ2s,A(Qj) ≤ κ∗, κ2s,A(Qj,new) ≤ κnew < κ∗ for a κ∗

that is small compared to one. Notice that this depends on the Lt’s and on the matrices A

and B.
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Assume that we are given an initial training sequence that satisfiesMt = BLt for t = 1, 2, . . . ttrain.

The goal is to recover St at each time t. It is not possible to recover Lt unless B is time-varying (this

case is studied in [111]). In many imaging applications, e.g. undersampled fMRI or single-pixel

video imaging, B = A (B = A is a partial Fourier matrix for MRI and is a random Gaussian or

Rademacher matrix for single-pixel imaging). On the other hand, if Lt is large but low-dimensional

sensor noise, then B = I (identity matrix), while A is the measurement matrix.

Let L̃t := BLt. It is easy to see that if Lt lies in a slowly changing low-dimensional subspace, the

same is also true for the sequence L̃t. Consider the problem of recovering St from Mt := ASt + L̃t

when an initial training sequence Mt := L̃t for t = 1, 2, . . . ttrain is available. Using this sequence,

it is possible to estimate its approximate basis Q̂0 as explained earlier. If we then project Mt into

the subspace orthogonal to range(Q̂0), the resulting vector yt := ΦtMt satisfies

yt = (ΦtA)St + βt

where βt = ΦtBLt is small noise for the same reasons explained earlier. Thus, one can still recover

St from yt by `1 or weighted `1 minimization followed by support recovery and LS. Then, L̃t gets

recovered as ˆ̃Lt ← Mt − AŜt and this is used for updating its subspace estimate. We summarize

the resulting algorithm in Algorithm 4. This is being analyzed in ongoing work [57].

The following lemma explains why some of the extra assumptions are needed for this case.

Lemma 4.5.3 [57] For a basis matrix, Q,

δs((I −QQ′)A) ≤ κs,A(Q)2 + δs(A)

Using the above lemma with Q ≡ Qj , it is clear that incoherence of Qj w.r.t. any set of 2s columns

of A along with RIP of A ensures that any s sparse vector x can be recovered from y := (I−QjQ′j)Ax

by `1 minimization. In compressive ReProCS, the measurement matrix uses Q̂j instead of Qj and

also involves small noise. With more work, these arguments can be extended to this case as well

[see [57]].
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Algorithm 4 Compressive ReProCS

Use Algorithm 1 or 3 with the following changes.

• Replace Φt in step 2 by ΦtA.

• Replace step 3 by ˆ̃Lt ←Mt −AŜt.

• Use ˆ̃Lt in place of L̂t and Q̂ in place of P̂ everywhere.
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CHAPTER 5. SIMULATION RESULTS

5.1 Model Verification

Firstly, we introduce the methods we used to verify the three basic model assumptions.

5.1.1 Low-dimensional and slow subspace change assumption

We used two background image sequence datasets. The first was a video of lake water motion.

For this sequence, n = 6480 and the number of images were 1500. The second was an indoor video

of window curtains moving due to the wind. There was also some lighting variation. The latter part

of this sequence also contains a foreground (various persons coming in, writing on the board and

leaving). For this sequence, the image size was n = 5120 and the number of background-only images

were 1755. Both sequences are posted at http://www.ece.iastate.edu/~hanguo/PracReProCS.

html.

First note that any given background image sequence will never be exactly low-dimensional,

but only be approximately so. Secondly, in practical data, the subspace does not just change as

simply as in the model of Sec 3.1. Typically there are some changes to the subspace at every time

t. Moreover, with just one training sequence of a given type, it is not possible to estimate the

covariance matrix of Lt at each t and thus one cannot detect the subspace change times. The

only thing one can do is to assume that there may be a change every τ frames, and that during

these τ frames the Lt’s are stationary and ergodic; estimate the covariance matrix of Lt for this

period using a time average; compute its eigenvectors corresponding to b% energy (or equivalently

compute the b% approximate basis of [Lt−τ+1, . . . Lt]) and use these as P(j). These can be used to

test our assumptions.

Testing for slow subspace change can be done in various ways. In [74, Fig 6], we do this after

low-rankifying the video data first. This helps to very clearly demonstrate slow subspace change,

http://www.ece.iastate.edu/~hanguo/PracReProCS.html
http://www.ece.iastate.edu/~hanguo/PracReProCS.html
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but then it is not checking what we really do on real video data. In this work, we proceed without

low-rankifying the data. We let t0 = 0 and tj = t0 + jτ with τ = 725. Let Lt denote the mean

subtracted background image sequence, i.e. Lt = Bt − µ where µ = (1/t1)
∑t1

t=0Bt. We computed

P(j) as P(j) = approx-basis([Ltj , ...Ltj+1−1], 95%). We observed that rank(P(j)) ≤ 38 for curtain

sequence, while rank(P(j)) ≤ 33 for lake sequence. In other words, 95% of the energy is contained

in only 38 or lesser directions in either case, i.e. both sequences are approximately low-dimensional.

Notice that the dimension of the matrix [Ltj , ...Ltj+1−1] is n× τ and min(n, τ) = τ = 725 is much

larger than 38. To test for slow subspace change, in Fig. 5.1a, we plot ‖(I−P(j−1)P
′
(j−1))Lt‖2/‖Lt‖2

when t ∈ [tj , tj+1). Notice that, after every change time (tj = 725, 1450), this quantity is initially

small for the first 100-150 frames and then increases gradually. It later decreases also but that is

allowed (all we need is that it be small initially and increase slowly).

5.1.2 Denseness assumption

Exactly verifying the denseness assumption is impossible since computing κs(.) has exponential

complexity (one needs to check all sets T of size s). Instead, to get some idea if it holds even just

for T replaced by Tt, in Fig. 5.1b, we plot maxi ‖ITt ′(P(j))i‖2 where Tt is the true or estimated

support of St at time t. For the lake sequence, Tt is simulated and hence known. For the curtain

sequence, we select a part of the sequence in which the person is wearing a black shirt (against a

white curtains’ background). This part corresponds to t = 35 to t = 80. For this part, ReProCS

returns a very accurate estimate of Tt, and we use this estimated support as a proxy for the true

support Tt.

5.1.3 Support size, support change and slow support change

For real video sequences, it is not possible to get the true foreground support. Thus we used

T̂t for the part of the curtain sequence described above in Sec 5.1.2 as a proxy for Tt. We plot

the support size normalized by the image size |Tt|/n, and we plot the number of additions and

removals normalized by the support size, i.e. |∆t|/|Tt| and |∆e,t|/|Tt| in Fig. 5.1c. Notice from the
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Figure 5.2: (a) Verification of slow subspace change assumption. (b) Verification of denseness assumption.
(c) Verification of small support size, small support change

figure that the support size is at most 10.2% of the image size. Notice also that at least at every 3

frames, there is at least a 1% support change. Thus there is some support change every few frames,

thus exposing the part of the background behind the foreground. Finally notice that the maximum

number of support changes is only 9.9% of the support size, i.e. slow support change holds for this

piece.

5.2 Experimental results

In this section, we show comparisons of prac-ReProCS with other batch and recursive algorithms

for robust PCA. For implementing the `1 or weighted `1 minimizations, we used the YALL1 `1

minimization toolbox [107], its code is available at http://yall1.blogs.rice.edu/.

Code and data for our algorithms and for all experiments given below is available at http:

//www.ece.iastate.edu/~hanguo/ReProCS_demo.rar.

5.2.1 Simulated data

In this experiment, the measurement at time t, Mt := Lt + St, is an n× 1 vector with n = 100.

We generated Lt using the autoregressive model described in [71] with auto-regression parameter

0.1, and the decay parameter fd = 0.1. The covariance of a direction decayed to zero before being

removed. There was one change time t1. For t < t1, Pt = P0 was a rank r0 = 20 matrix and

http://yall1.blogs.rice.edu/
http://www.ece.iastate.edu/~hanguo/ReProCS_demo.rar
http://www.ece.iastate.edu/~hanguo/ReProCS_demo.rar
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Cov(at) was a diagonal matrix with entries 104, 0.7079 × 104, 0.70792 × 104, · · · , 14.13. At t = t1,

c = c1,new = 2 new directions, P1,new, got added with Cov(at,new) being diagonal with entries 60

and 50. Also, the variance along two existing directions started to decay to zero exponentially. We

used ttrain = 2000 and t1 = ttrain + 5. The matrix [P0 P1,new] was generated as the first 22 columns

of an n × n random orthonormal matrix (generated by first generating an n × n matrix random

Gaussian matrix and then orthonormalizing it). For 1 ≤ t ≤ ttrain, St = 0 and hence Mt = Lt.

For t > ttrain, the support set, Tt, was generated in a correlated fashion: St contained one block

of size 9 or 27 (small and large support size cases). The block stayed static with probability 0.8

and move up or down by one pixel with probability 0.1 each independently at each time. Thus the

support sets were highly correlated. The magnitude of the nonzero elements of St is fixed at either

100 (large) or 10 (small).

For the small magnitude St case, ‖Lt‖2 ranged from 150 to 250 while ‖St‖2 was equal to 30

and 52, i.e. in this case ‖St‖2 � ‖Lt‖2. For the large magnitude case, ‖St‖2 was 300 and 520. We

implemented ReProCS (Algorithm 1) with b = 99.99 since this data is exactly low-rank. We used

q = 0.25 for the small magnitude St case and q = 1 for the other case. We compared with three

recursive robust PCA methods – incremental robust subspace learning (iRSL) [51] and adapted

(outlier-detection enabled) incremental SVD (adapted-iSVD) [3] and GRASTA [33] – and with two

batch methods – Principal Components’ Pursuit (PCP) [10] 1 and robust subspace learning (RSL)2

[94]. Results are shown in Table 5.1.

From these experiments, we can conclude that ReProCS is able to successfully recover both small

magnitude and fairly large support-sized St’s; iRSL has very bad performance in both cases; RSL,

PCP and GRASTA work to some extent in certain cases, though not as well as ReProCS. ReProCS

operates by first approximately nullifying Lt, i.e. computing yt as in (4.2), and then recovering St

by exploiting its sparsity. iRSL and RSL also compute yt the same way, but they directly use yt to

detect or soft-detect (and down-weight) the support of St by thresholding. Recall that yt can be

1We use the Accelerated Proximal Gradient algorithm[54] and Inexact ALM algorithm [53] (designed for large scale
problems) to solve PCP (2.1). The code is available at http://perception.csl.uiuc.edu/matrix-rank/sample_

code.html.
2The code of RSL is available at http://www.salleurl.edu/ ftorre/papers/rpca/rpca.zip.

http://perception.csl.uiuc.edu/matrix-rank/sample_code.html
http://perception.csl.uiuc.edu/matrix-rank/sample_code.html
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Table 5.1: Comparison of reconstruction errors of different algorithms for simulated data. Here, |Tt|/n is
the sparsity ratio of St, E[.] denotes the Monte Carlo average computed over 100 realizations and ‖.‖F is the
Frobenius norm of a matrix. Also, S = [S1, S2, . . . Stmax ] and Ŝ is its estimate; (Ot)i = (Mt)i if i ∈ Tt and
(Ot)i = 0 otherwise and Ôt is defined similarly with the estimates. O and Ô are the corresponding matrices.
We show error for O for iRSL and adapted-iSVD since these algorithms can only return an estimate of the
outlier support Tt; they do not return the background estimate.

(a) (St)i = 100 for i ∈ Tt and (St)i = 0 for i ∈ T ct
E‖S − Ŝ‖2F /E‖S‖2F E‖O − Ô‖2F /E‖O‖2F

|Tt|/n ReProCS-pPCA RSL PCP GRASTA adapted-iSVD iRSL

9% 1.52× 10−4 0.0580 0.0021 3.75× 10−4 0.0283 0.9105

27% 1.90× 10−4 0.0198 0.6852 0.1043 0.0637 0.9058

(b) (St)i = 10 for i ∈ Tt and (St)i = 0 for i ∈ T ct
E‖S − Ŝ‖2F /E‖S‖2F E‖O − Ô‖2F /E‖O‖2F

|Tt|/n ReProCS-pPCA RSL PCP GRASTA adapted-iSVD iRSL

9% 0.0344 8.7247 0.2120 0.1390 0.2346 0.9739

27% 0.0668 3.3166 0.6456 0.1275 0.3509 0.9778

rewritten as yt = St + (−P̂t−1P̂
′
t−1St) +βt. As the support size of St increases, the interference due

to (−P̂t−1P̂
′
t−1St) becomes larger, resulting in wrong estimates of St. For the same reason, direct

thresholding is also difficult when some entries of St are small while others are not. Adapted-iSVD

is our adaptation of iSVD [3] in which we use the approach of iRSL described above to provide the

outlier locations to iSVD (iSVD is an algorithm for recursive PCA with missing entries or what

can be called recursive low-rank matrix completion). It fills in the corrupted locations of Lt by

imposing that Lt lies in range(P̂t−1). We used a threshold of 0.5 mini∈Tt |(St)i| for both iRSL and

adapted-iSVD (we also tried various other options for thresholds but with similar results). Since

adapted-iSVD and iRSL are recursive methods, a wrong Ŝt, in turn, results in wrong subspace

updates, thus also causing βt to become large and finally causing the error to blow up.

RSL works to some extent for larger support size of St’s but fails when the magnitude of

the nonzero St’s is small. PCP fails since the support sets are generated in a highly correlated

fashion and the support sizes are large (resulting in the matrix St being quite rank deficient also).

GRASTA [33] is a recent recursive method from 2012. It was implemented using code posted

at https://sites.google.com/site/hejunzz/grasta. We tried two versions of GRASTA: the

demo code as it is and the demo code modified so that it used as much information as ReProCS used

https://sites.google.com/site/hejunzz/grasta
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(i.e. we used all available frames for training instead of just 100; we used all measurements instead

of just 20% randomly selected pixels; and we used r̂ returned by ReProCS as the rank input instead

of using rank=5 always). In this paper, we show the latter case. Both experiments are shown on

our supplementary material page http://www.ece.iastate.edu/~hanguo/PracReProCS.html.

5.2.2 Partly Simulated Video: Lake video with simulated foreground

In the comparisons shown next, we only compare with PCP, RSL and GRASTA. To address

a reviewer comment, we also compare with the batch algorithm of [61, 59] (referred to as MG in

the figures) implemented using code provided by the authors. There was not enough information

in the papers or in the code to successfully implement the recursive algorithm.

We implemented ReProCS (Algorithm 1 and Algorithm 3) with b = 95 since the videos are

only approximately low-rank and we used q = 1 since the magnitude of St is not small compared to

that of Lt. The performance of both ReProCS-pPCA (Algorithm 1) and ReProCS-recursive-PCA

(Algorithm 3) was very similar. Results with using the latter are shown in Fig. 5.9.

We used the lake sequence described earlier to serve as a real background sequence. Foreground

consisting of a rectangular moving object was overlaid on top of it using (3.2). The use of a real

background sequence allows us to evaluate performance for data that only approximately satisfies

the low-dimensional and slow subspace change assumptions. The use of the simulated foreground

allows us to control its intensity so that the resulting St is small or of the same order as Lt (making

it a difficult sequence), see Fig. 5.3b.

The foreground Ft was generated as follows. For 1 ≤ t ≤ ttrain, Ft = 0. For t > ttrain, Ft consists

of a 45×25 moving block whose centroid moves horizontally according to a constant velocity model

with small random acceleration [70, Example V.B.2]. To be precise, let pt be the horizontal location

of the block’s centroid at time t, let vt denote its horizontal velocity. Then gt :=

pt
vt

 satisfies

gt = Ggt−1 +

 0

nt

 where G :=

1 1

0 1

 and nt is a zero mean truncated Gaussian with variance

Q and with −2
√
Q < |nt| < 2

√
Q. The nonzero pixels’ intensity is i.i.d. over time and space

http://www.ece.iastate.edu/~hanguo/PracReProCS.html
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Table 5.2: Comparison of speed of different algorithms. Experiments were done on a 64 bit Windows

8 laptop with 2.40GHz i7 CPU and 8G RAM. Sequence length refers to the length of sequence for

training plus the length of sequence for separation. For ReProCS and GRASTA, the time is shown

as training time + recovery time.

DataSet Image Size Sequence Length ReProCS-pPCA ReProCS-Recursive-PCA PCP RSL GRASTA

Lake 72× 90 1420 + 80 2.99 + 19.97 sec 2.99 + 19.43 sec 245.03 sec 213.36 sec 39.47 + 0.42 sec

Curtain 64× 80 1755 + 1209 4.37 + 159.02 sec 4.37 + 157.21 sec 1079.59 sec 643.98 sec 40.01 + 5.13 sec

Person 120× 160 200 + 52 0.46 + 42.43 sec 0.46 + 41.91 sec 27.72 sec 121.31 sec 13.80 + 0.64 sec

and distributed as uniform(b1, b2), i.e. (Ft)i ∼ uniform(b1, b2) for i ∈ Tt. In our experiments, we

generated the data with ttrain = 1420, b1 = 170, b2 = 230, pt0+1 = 27, vt0+1 = 0.5 and Q = 0.02.

With these values of b1, b2, as can be seen from Fig. 5.3b, ‖St‖2 is roughly equal or smaller than

‖Lt‖2 making it a difficult sequence. Since it is not much smaller, ReProCS used q = 1; since

background data is approximately low-rank it used b = 95.

We generated 50 realizations of the video sequence using these parameters and compared all

the algorithms to estimate St, Lt and then the foreground and the background sequences. We show

comparisons of the normalized mean squared error (NMSE) in recovering St in Fig. 5.3a. Visual

comparisons of both foreground and background recovery for one realization are shown in Fig. 5.5.

The recovered foreground image is shown as a white-black image showing the foreground support:

pixels in the support estimate are white. PCP gives large error for this sequence since the object

moves in a highly correlated fashion and occupies a large part of the image. GRASTA also does

not work. RSL is able to recover a large part of the object correctly, however it also recovers many

more extras than ReProCS. The reason is that the magnitude of the nonzero entries of St is quite

small (recall that (St)i = (Ft −Bt)i for i ∈ Tt) and is such that ‖Lt‖2 is about as large as ‖St‖2 or

sometimes larger (see Fig. 5.3b).

5.2.3 Real video sequences

Next we show comparisons on two real video sequences. These are originally taken from http://

perception.i2r.a-star.edu.sg/bk_model/bk_index.html and http://research.microsoft.

com/en-us/um/people/jckrumm/wallflower/testimages.htm, respectively. The first is the cur-

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
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Figure 5.4: Experiments on partly simulated video. (a) Normalized mean squared error in recovering St

for realizations. (b) Comparison of ‖St‖2 and ‖Lt‖ for one realization. MG refers to the batch algorithm of
[61, 59] implemented using code provided by the authors. There was not enough information in the papers
or in the code to successfully implement the recursive algorithm.
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original ReProCS PCP RSL GRASTA MG

(fg) (fg) (fg) (fg) (fg)

(bg) (bg) (bg) (bg) (bg)

Figure 5.5: Original video at t = ttrain+30, 60, 70 and its foreground (fg) and background (bg) layer recovery
results using ReProCS (ReProCS-pCA) and other algorithms. MG refers to the batch algorithm of [61, 59]
implemented using code provided by the authors. There was not enough information in the papers or in the
code to successfully implement the recursive algorithm. For fg, we only show the fg support in white for ease
of display.
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original ReProCS PCP RSL GRASTA MG

(fg) (fg) (fg) (fg) (fg)

(bg) (bg) (bg) (bg) (bg)

Figure 5.6: Original video sequence at t = ttrain + 60, 120, 199, 475, 1148 and its foreground (fg) and back-
ground (bg) layer recovery results using ReProCS (ReProCS-pCA) and other algorithms. For fg, we only
show the fg support in white for ease of display.
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original ReProCS PCP RSL GRASTA MG

(fg) (fg) (fg) (fg) (fg)

(bg) (bg) (bg) (bg) (bg)

Figure 5.7: Original video sequence at t = ttrain + 42, 44, 52 and its foreground (fg) and background (bg)
layer recovery results using ReProCS (ReProCS-pCA) and other algorithms. For fg, we only show the fg
support in white for ease of display.

(a) t = 30, 60, 70 (b) t = 60, 120, 475 (c) t = 42, 44, 52

Figure 5.9: Foreground layer estimated by ReProCS-Recursive-PCA for the lake, curtain and person videos
shown in Figs 5.5, 5.6 and 5.7. As can be seen the recovery performance is very similar to that of ReProCS-
pPCA (Algorithm 1).
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original ReProCS SparCS

Figure 5.10: Original video frames at t = ttrain + 30, 60, 70 and foreground layer recovery by ReProCS and
SparCS.

tain sequence described earlier. For t > 1755, in the foreground, a person with a black shirt walks

in, writes on the board and then walk out, then a second person with a white shirt does the same

and then a third person with a white shirt does the same. This video is challenging because (i)

the white shirt color and the curtains’ color is quite similar, making the corresponding St small in

magnitude; and (ii) because the background variations are quite large while the foreground person

moves slowly. As can be seen from Fig. 5.6, ReProCS’s performance is significantly better than

that of the other algorithms for both foreground and background recovery. This is most easily seen

from the recovered background images. One or more frames of the background recovered by PCP,

RSL and GRASTA contains the person, while none of the ReProCS ones does.

The second sequence consists of a person entering a room containing a computer monitor that

contains a white moving region. Background changes due to lighting variations and due to the

computer monitor. The person moving in the foreground occupies a very large part of the image,

so this is an example of a sequence in which the use of weighted `1 is essential (the support size is

too large for simple `1 to work). As can be seen from Fig. 5.7, for most frames, ReProCS is able

to recover the person correctly. However, for the last few frames which consist of the person in a

white shirt in front of the white part of the screen, the resulting St is too small even for ReProCS
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to correctly recover. The same is true for the other algorithms. Videos of all above experiments

and of a few others are posted at http://www.ece.iastate.edu/~hanguo/PracReProCS.html.

Time Comparisons. The time comparisons are shown in Table 5.2. In terms of speed, GRASTA

is the fastest even though its performance is much worse. ReProCS is the second fastest. We

expect that ReProCS can be speeded up by using mex files (C/C++ code) for the subspace

update step. PCP and RSL are slower because they jointly process the entire image sequence.

Moreover, ReProCS and GRASTA have the advantage of being recursive methods, i.e. the fore-

ground/background recovery is available as soon as a new frame appears while PCP or RSL need

to wait for the entire image sequence.

5.2.4 Compressive ReProCS: comparisons for simulated video.

We compare compressive ReProCS with SpaRCS [97] which is a batch algorithm for under-

sampled robust PCA / separation of sparse and low-dimensional parts(its code is downloaded

from http://www.ece.rice.edu/~aew2/sparcs.html). No code is available for most of the other

compressive batch robust PCA algorithms such as [100, 28]. SpaRCS is a greedy approach that

combines ideas from CoSaMP [65] for sparse recovery and ADMiRA [49] for matrix completion.

The comparison is done for compressive measurements of the lake sequence with foreground simu-

lated as explained earlier. The matrix B = A is m × n random Gaussian with m = 0.7n. Recall

that n = 6480. The SpaRCS code required the background data rank and foreground sparsity

as inputs. For rank, we used r̂ returned by ReProCS, for sparsity we used the true size of the

simulated foreground. As can be seen from Fig. 5.10, SpaRCS does not work while compressive

ReProCS is able to recover St fairly accurately, though of course the errors are larger than in the

full sampled case. All experiments shown in [97] are for very slow changing backgrounds and for

foregrounds with very small support sizes, while neither is true for our data.

http://www.ece.iastate.edu/~hanguo/PracReProCS.html
http://www.ece.rice.edu/~aew2/sparcs.html
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5.3 Conclusion

We designed and evaluated prac-ReProCS which is a practically usable modification of its

theoretical counterpart that was studied in earlier work [74, 73, 1]. We showed that prac-ReProCS

has excellent performance for both simulated data and for a real application (foreground-background

separation in videos) and the performance is better than many of the state-of-the-art algorithms

from recent work. Moreover, most of the assumptions used to obtain its guarantees are valid for

real videos. Finally we also proposed and evaluated a compressive prac-ReProCS algorithm. In

ongoing work, on one end, we are working on performance guarantees for compressive ReProCS

[57] and on the other end, we are developing and evaluating a related approach for functional MRI.

In fMRI, one is allowed to change the measurement matrix at each time. However if we replace

B = A by At in Sec 4.5 the compressive ReProCS algorithm does not apply because AtLt is not

low-dimensional [111].
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CHAPTER 6. VIDEO DENOISING WITH PRAC-REPROCS

6.1 Introduction

Video denoising refers to the problem of removing “noise” from a video sequence. Here the term

“noise” is used in a broad sense to refer to any corruption or outlier or interference that is not the

quantity of interest. In the last few decades there has been a lot of work on video denoising. An

important direction for denoising is “grouping and collaborative filtering” approaches which try to

search for similar image patches both within an image frame and across nearby frames, followed by

collaboratively filtering the noise from the stack of matched patches [4, 22, 23, 26, 58, 14]. One of

the most effective methods for image denoising, Block Matching and 3D filtering (BM3D) [22], is

from this category of techniques. In BM3D, similar image blocks are stacked in a 3D array followed

by applying a noise shrinkage operator in a transform domain (illustration of grouping shown in

Figure.6.1). In its video version, VBM3D [21], the method is generalized to video denoising by

searching for similar blocks across multiple frames.

Other related works [42, 41] apply batch matrix completion or matrix decomposition on grouped

image patches to remove outliers. [15] studies performance bounds for image denoising and shows

Figure 6.1: Illustration of BM3D: a simple example of grouping in an artificial image, where for

each reference block (with thick borders) there exist perfectly similar ones (image from [22]).
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that there is still room for improvement. Recent works on video denoising include approaches that

use motion compensation algorithms from the video compression literature followed by denoising

of similar nearby blocks [55, 31]; and approaches that use wavelet transform based [76, 75, 109]

and discrete cosine transform (DCT) based [45] denoising solutions. Very recent video denoising

methods include algorithms based on sparsifying transform learning [99, 98]. Another important

denoising approach is based on deep learning, e.g., [104, 2, 112] for image denoising and [18] for

video denoising.

In this chapter we develop a novel denoising solution framework, that we call Layering-Denoising

(LD), for highly noisy or otherwise corrupted videos that are well modeled as the sum of a dense

low-rank matrix and a sparse matrix with high enough rank (not too many nonzeroes in any row

or column). We refer to these components as the “low-rank layer” and the “sparse layer” of the

video. For such videos, we show that the performance of existing state-of-the-art denoisers can be

significantly improved (especially in very large noise settings) if the video is first decomposed into

the two layers, and the denoiser is applied on each layer separately. After this, depending on the

application of interest, either just the denoised low-rank layer, or just the denoised sparse layer can

be outputted, or the two denoised layers can be added back and the denoised video outputted. A

large class of videos fit in the above category. Many clean videos are slowly changing and these are

well modeled as forming a low-rank matrix. Large noise (including large Gaussian noise) can be split

into the sum of a small bounded component and a large magnitude sparse component. We explain

this fact in detail in Sec. 6.2. Thus, slowly changing videos corrupted by either large noise or by

salt-and-pepper noise (which, by definition, is sparse), are well modeled as being low-rank+sparse.

Moreover, many other videos consist of slow-changing backgrounds plus sparse foreground moving

objects. Noisy versions of such videos are also correctly modeled as low-rank plus sparse with the

sparse layer now consisting of both the foreground and the large components of the noise. A third

application is low-light video denoising or “seeing in the dark”. Layering-Denoising allows one to

see the moving objects which are barely visible otherwise.
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Figure 6.2: Example of video denoising: detecting invisible object in the dark.

We develop a fast and memory-efficient denoising solution called ReProCS-based Layering De-

noising (ReLD). This consists of an online algorithm based on Recursive Projected Compressive

Sensing (ReProCS) framework for the layering task and VBM3D [21] for denoising each of the

layers. We pick the ReProCS approach because ReProCS-based algorithms are known to provide

online (after a short batch initialization), fast, memory-efficient, and highly-robust robust PCA

solutions [30, 64].

Example applications. Many videos that require denoising/enhancement can be accurately

modeled in the above fashion. All videos referenced below are posted at http://www.ece.iastate.

edu/~hanguo/denoise.html.

1. In very low-light videos of moving targets/objects (the moving target is barely visible), the

denoising goal is to “see” the barely visible moving targets (sparse). These are hard to see

because they are corrupted by slowly-changing background images (shown in Figure.6.2).

2. Consider slowly changing videos that are corrupted by salt-and-pepper noise (or other im-

pulsive noise). For these types of videos, the large magnitude part of the noise forms the

“sparse layer”, while the video-of-interest (slowly-changing in many applications, e.g., water-

fall, waving trees, sea water moving, etc) forms the approximate “low-rank layer”. The goal

is to denoise or extract out the “low-rank layer” (shown in Figure.6.3).

3. Consider slow-changing videos corrupted by very large variance white Gaussian noise. As we

explain below, large Gaussian noise can, with high probability, be split into a very sparse

noise component plus bounded noise.

http://www.ece.iastate.edu/~hanguo/denoise.html
http://www.ece.iastate.edu/~hanguo/denoise.html
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Figure 6.3: Example of video denoising: salt-and-pepper noise.

Figure 6.4: Example of video denoising: large Gaussian noise.

4. In videos where foreground objects are also present, the video itself become “low-rank +

sparse”. In such a scenario, the “sparse layer” that is extracted out will consist of the

foreground object and the large magnitude part of the noise. Some examples are the curtain

and lobby videos (shown at http://www.ece.iastate.edu/~hanguo/denoise.html). The

proposed ReLD algorithm works for these videos if VBM3D applied to the foreground layer

video is able to separate out the foreground moving object(s) from the noise.

Moreover, in all these examples, it is valid to argue that the columns of the low-rank matrix

lie in a low-dimensional subspace that is either fixed or slowly changing. This is true, for example,

when the background consists of moving waters, or the background changes are due to illumination

variations. These also result in global (non-sparse) changes.

6.2 Problem formulation

Let Mt denote the image at time t arranged as a 1D vector of length n. We consider denoising

for videos in which each image can be split as

http://www.ece.iastate.edu/~hanguo/denoise.html
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Mt = Lt + St +Wt, t = 1, 2, . . . , tmax

where St is a sparse vector, Lt’s lie in a fixed or slowly changing low-dimensional subspace of Rn

so that the matrix L := [L1, L2, . . . , Ltmax ] is low-rank, and Wt is the residual noise that satisfies

‖Wt‖∞ ≤ bw. We use Tt to denote the support set of St, i.e., Tt := support(St).

In the first example given above, the moving targets’ layer is St, the slowly-changing dark

background is Lt + Wt. The layer of interest is St. In the second example, the slowly changing

video is Lt + Wt, while the salt-and-pepper noise is St. The layer of interest is Lt. In the third

example, the slowly changing video is Lt + W1,t with W1,t being the residual; and, as we explain

next, with high probability (whp), white Gaussian noise can be split as St +W2,t with W2,t being

bounded. In this case, Wt = W1,t +W2,t.

Let n denote a Gaussian noise vector in Rn with zero mean and covariance σ2I. Let β(b) :=

2Φ(b) − 1 with Φ(z) being the cumulative distribution function (CDF) of the standard Gaussian

distribution. Then, it is not hard to see that n can be split as

n = s + w

where w is bounded noise with ‖w‖∞ ≤ b0 and s is a sparse vector with support size |Tt| ≈(
1− β

(
b0
σ

))
n whp. More precisely, with probability at least 1− 2 exp(−2ε2n),(

1− β
(
b0
σ

)
− ε
)
n ≤ |Tt| ≤

(
1− β

(
b0
σ

)
+ ε

)
n.

In words, whp, s is sparse with support size roughly (1−β)n where β = β
(
b0
σ

)
. The above claim is

a direct consequence of Hoeffding’s inequality for a sum of independent Bernoulli random variables

1.

1If p is the probability of zi = 1, then Hoeffding’s inequality says that:

Pr((p− ε)n ≤
∑
i

zi ≤ (p+ ε)n) ≥ 1− 2 exp(−2ε2n)

We apply it to the Bernoulli random variables zi’s with zi defined as zi = 1 if {si 6= 0} and zi = 0 if {si = 0}.
Clearly, Pr(zi = 0) = Pr(si = 0) = Pr(n2

i ≤ b20) = Φ(b0/σ)− Φ(−b0/σ) = 2Φ(b0/σ)− 1 = β(b0/σ).
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6.3 ReProCS-based Layering Denoising (ReLD)

We summarize the ReProCS-based Layering Denoising (ReLD) algorithm in Algorithm 5. The

approach is explained below.

Initialization. Take M0 = [M1,M2, · · · ,Mt0 ] as training data and use PCP [10] to separate

it into a sparse matrix [Ŝ1, Ŝ2, · · · , Ŝt0 ] and a low-rank matrix [L̂1, L̂2, · · · , L̂t0 ]. Compute the top

q% left singular vectors of [L̂1, L̂2, · · · , L̂t0 ] denoted by P̂ 0. Here q% left singular vectors of a matrix

M refer to the left singular vectors of M whose corresponding singular values form the smallest

set of singular values that contains at least q% of the total singular values’ energy.

Splitting phase. Let P̂ t−1 be the basis matrix (matrix with orthonormal columns) for the

estimated subspace of Lt−1. For t ≥ t0 + 1, we split Mt into Ŝt and L̂t using prac-ReProCS [30].

To do this, we first project Mt onto the subspace orthogonal to range(P̂ t−1) to get the projected

measurement vector,

yt := (I − P̂ t−1P̂
′
t−1)Mt := ΦtMt. (6.1)

Observe that yt can be expressed as

yt = ΦtSt + βt where βt := Φt(Lt +Wt). (6.2)

Because of the slow subspace change assumption, the projection nullifies most of the contribu-

tion of Lt and hence βt is small noise. The problem of recovering St from yt becomes a traditional

noisy sparse recovery/CS problem and one can use L1 minimization or any of the greedy or iter-

ative thresholding algorithms to solve it. We denote its solution by Ŝt, and obtain L̂t by simply

subtracting Ŝt from Mt.

Denoising phase. We perform VBM3D on Ŝ = [Ŝ1, . . . , Ŝtmax ] and L̂ = [L̂1, . . . , L̂tmax ]

and obtain the denoised data Ŝdenoised and L̂denoised. Based on applications, we output differ-

ent results. For example, in the low-light denoising case, our output is Ŝ since the goal is to

extract out the sparse targets. In traditional denoising scenarios, the output can be L̂denoised or

Îdenoised=Ŝdenoised+L̂denoised. This depends on whether the video contains only background or back-
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Algorithm 5 ReProCS-based Layering Denoising (ReLD)

Splitting:

1. Initialization using PCP [10]: Compute (L̂0, Ŝ0) ← PCP(M0) and compute

[P̂ 0, Σ̂0] ← approx-basis(L̂0, 90%). The notation PCP(M) means implementing the

PCP algorithm on matrix M and P = approx-basis(M, q%) means that P is the q% left

singular vectors’ matrix for M.

2. For all t > t0, implement an appropriately modified ReProCS algorithm

(a) Split Mt into layers L̂t and Ŝt:

i. Compute yt ← ΦtMt with Φt ← I − P̂ t−1P̂
′
t−1

ii. Compute Ŝt as the solution of

min
x
‖x‖1s.t.‖yt − Φtx‖2 ≤ ξ

with ξ = ‖ΦtL̂t−1‖
iii. T̂t ← Thresh(Ŝt, ω) with ω = 3

√
‖Mt‖2/n. Here T ← Thresh(x, ω) means that

T = {i : |(x)i| ≥ ω}
Ŝt,∗ ← LS(yt,Φt, T̂t). Here x̂← LS(y,A, T ) means that x̂T = (A′T AT )−1A′T y, which

is least-squared estimate of x on T .

iv. L̂t ←Mt − Ŝt, L̂t,∗ ←Mt − Ŝt,∗
(b) Perform subspace update, i.e., update P̂ t using projection-PCA introduced in Chapter.4

VBM3D Denoising:

1. σ̂fg ← Std-est([Ŝt, . . . , Ŝt0 ])

σ̂bg ← Std-est([L̂t, . . . , L̂t0 ]). Here Std-est(M) denotes estimating the standard deviation of

noise from M: we first subtract column-wise mean from M and then compute the standard

deviation by seeing it as a vector.

2. Ŝdenoised ← VBM3D([Ŝ1, . . . , Ŝtmax ], σ̂fg)

L̂denoised ← VBM3D([L̂1, . . . , L̂tmax ], σ̂bg). Here VBM3D(M, σ) implements the VBM3D al-

gorithm on matrix M with input standard deviation σ.

Output: Ŝ, Ŝdenoised, L̂denoised or Îdenoised = Ŝdenoised + L̂denoised based on applications
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ground and foreground. In practice, even for videos with only backgrounds, adding Ŝdenoised helps

improve PSNR.

Subspace Update phase (Optional). In long videos the span of the Lt’s will change

with time. Hence one needs to update the subspace estimate P̂ t every so often. This can be done

efficiently using the projection-PCA algorithm from Chapter.4.

6.4 Experiments

Video demos and all tables of peak signal to noise ratio (PSNR) comparisons are also available

at http://www.ece.iastate.edu/~hanguo/denoise.html. Code for ReLD is also posted on the

page. The same code with all the same parameters is used for all our experiments.

http://www.ece.iastate.edu/~hanguo/denoise.html


www.manaraa.com

50

T
ab

le
6.

1:
C

om
p

ar
in

g
P

S
N

R
s

an
d

ru
n

n
in

g
ti

m
e

in
se

co
n

d
s

fo
r

W
at

er
fa

ll
v
id

eo
(s

m
al

l
si

ze
).

F
or

m
at

:
P

S
N

R
u

si
n

g
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Remove Gaussian noise. First, with different levels of Gaussian noise, we compare perfor-

mance of our proposed denoising framework with video layering performed using either ReProCS,

or using the other robust PCA algorithms - PCP [10], SPCP [115], AltProj [66], RPCA-GD [108],

ORPCA [25] and GRASTA [33]. We call the respective algorithms ReLD, PCP-LD, SPCP-LD,

AltProj-LD, RPCA-GD-LD, ORPCA-LD and GRASTA-LD for short. We test all these on the

waterfall dataset (downloaded from Youtube https://www.youtube.com/watch?v=UwSzu_0h7Bg).

Besides these Layering-Denoising algorithms, we also compare with VBM3D [21], SALT [98] and

two neural network image denoising methods, DnCNN [112] and MLP [5]. For MLP, we use masks

that are trained from image patches that were corrupted with Gaussian noise with σ = 25 and

hence the denoising performance is best with σ = 25 and deteriorates for other noise levels. For

DnCNN we used masks for each noise level so the comparisons are fair. We did not re-train any

neural network, so the times reported are only testing times. Notice both are much slower than

ReLD.

The waterfall video is slowly changing and hence is well modeled as being low-rank. We add

i.i.d. Gaussian noise with different variances to the video. The video consists of 650 frames and the

original image size is 1080×1920. Due to memory restriction, some algorithms cannot be tested for

this size. Hence for a full comparison we under-sampled the image and compared the algorithms

with image size 108 × 192 and 540 × 960. We summarize the results for image size 108 × 192

with σ = 25, 30, 50, and 70 in Table 6.1. The full results with two other different image sizes

(not all algorithms were compared) are provided in Table.6.2 and Table.6.3. For LD algorithms,

we found that outputting L̂denoised as denoising results has higher PSNRs when noise variance is

large. Therefore we display PSNRs computed using L̂denoised for σ = 70 for Layering-Denoising

algorithms. As can been seen in Table 6.1 (first 4 rows), ReLD has either the best performance or

close to the best one.

Gaussian noise on more datasets. From the experimental results shown above, ReLD was

the best LD solution in terms of both speed and performance. Hence we only compare ReLD with

the other non-LD approaches in this experiment. In Table 6.4, we provide comparisons on four

https://www.youtube.com/watch?v=UwSzu_0h7Bg
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original noisy SLMA VBM3D

ReLD DnCNN SALT

(a) Curtain

original noisy SLMA VBM3D

ReLD DnCNN SALT

(b) Lobby

Figure 6.6: Visual comparison of denoising performance for Curtain and Lobby dataset for very

large Gaussian noise (σ = 70)
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Figure 6.7: Frame-wise PSNR for Curtain and Lobby dataset with different noise level: (a) Curtain,

Gaussian, σ = 25, (b) Curtain, Gaussian, σ = 70, (c) Lobby, Gaussian, σ = 25, (d) Lobby,

Gaussian, σ = 70
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more videos - fountain, escalator, curtain and lobby with different levels of Gaussian noise. In Fig.

6.7 we plot frame-wise PSNRs for the curtain and lobby datasets with diferent noise levels. In

Fig.6.5a and Fig.6.5b we show sample visual comparisons for the curtain and lobby dataset which

is also corrupted by Gaussian noise with σ = 70. As can be seen, ReLD and SALT are the top

two algorithms with highest PSNRs and are able to recover more details of the images while other

algorithms either fail or cause severe blurring. For curtain dataset with Gaussian (σ = 70) noise, as

shown in Table 6.4, the PSNRs for ReLD and SALT are 28.10 and 29.19, respectively. In this case,

SALT has slightly higher PSNR, but a careful visual comparison in Fig. 6.5a shows that ReLD

recovers sharper details. The desk in the bottom of the image frame is recovered more clearly by

ReLD than by SALT. In terms of running time, ReLD is significantly faster too.

Removing Salt & Pepper noise. We compare denoising performance on videos corrupted

by salt-and-pepper noise. We compare the same algorithms as in previous experiments, and also

use the same waterfall dataset. We corrupted it with 5%, 10% and 20% salt and pepper noise and

then added Gaussian noise to it with σ = 20. The result is also summarized in Table 6.1. Here we

also display PSNRs computed using L̂denoised for the Layering-Denoising algorithms.

low-light environment. In this part we test the ReLD’s performance for denoising in low-

light environment, i.e., to see target signal in the low-light environment. The video was taken in a

dark environment where a barely visible person walked through the scene. The output we are using

here for ReLD is Ŝ, which is the output of ReProCS. In Fig.6.8 we see ReLD is able to enhance

the visual quality – observing the walking person. Note that Histogram-Equalization in this case

can generate extra noise and cannot automatically mark the target.

6.5 Conclusion

From our experiments, (i) ReLD is most powerful for videos containing small-sized images,

because, these are the videos for which VBM3D has a hard time finding enough matching patches

to average over. (ii) It is also most useful for denoising of very noisy videos, e.g., Gaussian noise

standard deviation equal to 70 (for 0-255 pixel value range), or of videos corrupted by salt-and-
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img1

img2

original ReLD Histogram

Equalization

Figure 6.8: Ability of “seeing” in the dark for two sample frames. From left to right: orignal dark

image, results by ReLD, and Histogram-Equalization.

pepper noise. In both these cases, finding correctly matching patches is hard. Averaging over wrong

matches of course results in bad denoised video quality. In conclusion, for small-sized or very noisy

videos, ReLD should be used, while for very large sized images or small noise, just VBM3D is a

better idea except if the layers are also needed. ReLD has the extra advantage of also outputting

estimates of the background and foreground layers.
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CHAPTER 7. A FUTURE WORK DIRECTION

The idea of “low-rank + sparse” is widely applied in various applications e.g., video fore-

ground/background separation, fMRI imaging, voice separation and anomaly detection. It’s popu-

lar due to its interpretability – many problems in nature have such a “low-rank + sparse” property.

In machine learning terminology, “low-rank + sparse” solutions, or robust PCA solutions are

unsupervised and do not need the process of training using well-labelled data, which can be an

advantage if there is no access to annotated data or the data size is too small. However, in many

tasks such as image classification and object detection, large-scaled well-annotated data is publicly

accessble, compared with deep learning methods, robust PCA solutions are usually not preferred

due to not utilizing the large amount of data.

To address this limit, there has been works studying the combination of robust PCA and deep

learning. One interesting example is in [93] where the authors show that, the performance of

video object detection task can be improved if the deep learning detector is performed on the

foreground mask, which is first separated out by an robust PCA method. Specifically, the authors

used an PCP based robust PCA method to perform the foreground/background separation and

next implemented faster-RCNN on the foreground mask to detect the object. The faster-RCNN

model was first trained with a large-scaled dataset. The robust PCA step in this example can be

seen as a pre-processing step, and the idea is very similar to that of layering-denoising introduced

in Chapter 6. In future research, it will be interesting to see how prac-ReProCS can be combined

with deep learning approaches in solving industrial problems, either as a pre-processing step or as

a key component.

In the following part of this chapter, we discuss the problem of logo detection, a computer

vision task that is independent of the discussion of prac-ReProCS in previous chapters. However,

in developping the current solution to the logo detection problem, we found that a combination of
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prac-ReProCS and faster-RCNN, a state-of-the-art object detection algorithm, can be a valuable

solution which makes the current one from semi-automatic to fully-automatic. The work was

developped under internship projects at Adobe Research in 2018 and 2019 and is under submission

to a double-blind reviewed conference on multimedia.

7.1 Introduction

Logo detection is an important problem in a wide range of applications, e.g., vehicle logo recog-

nition for intelligent traffic-control systems [103, 67, 80, 81], consumer perception [88], copyright

protection and infringement detection [40, 110, 19]. The majority of the logo detection solutions

are closed-set approaches, where all different brands of logos are known and are pre-trained within

the detection system. On the contrary, a category of solutions are designed for open-set detection

tasks where logos are not seen and predefined in the system [91, 95]. The main idea of the open-set

solutions is to consider all the input logo instances as one class (with the other class being images

without any logos), and train a simple binary logo detector. Being able to handle a large amount of

diverse unseen logos and brands is the biggest advantage of the open-set approaches. In real-world

applications, however, open-set solutions are not widely used due to their high false-positive rates

– common non-logo objects that share similar shapes or textures with logos (e.g., a round clock, a

red cross) are very likely to be detected as logos.

As a special case of general object detection task, logo detection methods are becoming more

accurate and robust with recent development of object detection algorithms. Deep neural-network

architectures enable detecting objects and logos even in diverse contexts such as presence of different

illuminations and occlusions. However, proper training of deep neural-network based algorithms

require large amount of training data per class with object-level annotations, which prevents many

existing algorithms from considering a larger number of logo classes (see Fig.7.1). For this reason,

they are not scalable to real-world or industry-level logo detection tasks where a much larger number

of logo classes are of interest.
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Figure 7.1: D1: BelgaLogos[46], D2: FlickrLogos-27 [47], D3: FlickrLogos-32 [81], D4: TopLogo-10

[90], D5: LOGO-NET [35], D6: WebLogo-2M [89], D7: Logo173 (ours). Left: comparison of

number of logo classes in different datasets. Right: comparison of total images in different datasets

(with object-level annotation). D6 has a total of 1,867,177 images but they are all labelled in image

level and contain noise. Therefore we do not plot it in the right chart.

In a recent work [89], to avoid exhaustive manual labelling, a novel incremental learning ap-

proach called Scalable Logo Self-training (SLST) was proposed. The algorithm explores the webly

data (images obtained from image search queries in Twitter) and learns by iteratively self-mining

training images from noisy web data and updating current model. Applying this learning principle,

it introduced a very large logo dataset called “WebLogo-2M”. Although it requires no annotation

work, there are still obstacles that hinder it from being widely applied to industry-level applications.

Firstly, SLST framework runs the self-mining and model-update iterations with the assumption that

the number of logo classes is fixed while in reality it is more practical to desire that new logo classes

can be added to the system. Secondly, SLST, as a completely automatic system, inevitably has

the model drift problem - the errors in model prediction can be propagated through the iterations.

Thirdly, the dataset that the authors introduced is noisy and not labelled at the object level and

hence has limited value for a quick implementation.

To tackle these problems, in this work we consider a distributed data augmentation and train-

ing pipeline where each logo class is trained and updated independently before finally training a

multi-class logo detector. For each logo class, we initially bootstrap using synthetic data. This is

followed by iteratively self-mining (selecting good samples) from weakly-labelled image candidates
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Figure 7.2: Illustration of logo detection challenges

and updating current model. A multi-class detector is trained when each logo class finishes its

iterations and collects enough real image data. Treating each logo class independently brings two

benefits: (1) The training and updating task for each logo class can be implemented using different

hardware, which achieves computation efficiency and makes it possible to add new logo classes

without affecting existing tasks. (2) If human curation is included to avoid model drift, curating

one logo class at a time is advantageous due to ease of visual display (discussed later).

Our contribution in this work are three-fold: (1) We introduce a semi-automatic solution to the

logo detection problem which finds a balance between reducing annotation work and avoiding model

drift. To our best knowledge, this is the first work that use semi-automatic training strategy in

logo detection tasks. (2) We propose a pipeline for data augmentation and training, which initially

treats each logo class independently and thus achieves computation efficiency and allows new logo

classes to be added to the system later. This architecture also makes human curation easier -

we develop a simple User Interface where pre-selected results are zoomed to the bounding-box

level and displayed as an image array, and users can conveniently pick incorrect samples by simple

clicks. (3) With this pipeline, we also created a large dataset Logo173 that includes 173,000 images

of 173 logo classes (1000 images per logo), and all images are well-annotated with bounding-box
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Figure 7.3: Example of obtaining weakly-labelled data from Google Image Search.

information. In terms of the number of logo classes and total images, this is the largest dataset

that has object-level bounding-box information.

The idea of using weakly-labelled data can be seen in many applications [17, 50, 89, 86, 44,

84, 106, 83]. Images obtained from search engines are usually pre-filtered by search queries and thus

contain relevant information. For instance, images obtained from Google Image Search by the query

“UPS” are mostly related to the shipping company UPS (see Fig.7.3). The term “weakly-labelled”

comes from the fact that neither do such images have object-level bounding box information nor

are they guaranteed to even have the corresponding logos. Although weakly-labelled, they are great

candidates to make a well-annotated training set.

“Headshot logos” vs “logos in the scene”. In a practical setting, the logo detection task

involves detecting logos in natural scenes which are very often complex. This entails that the

images we collect for training to be representative across various kinds of natural scenes. One can

clearly see the difference between a “headshot logo” image and “logo in the scene” image as shown

in Fig.7.5. To avoid getting two many “headshot logos” images, we carefully designed meaningful

search queries instead of merely searching with logo names.

Specifically, for each logo, we generate a set of search queries which takes into consideration

factors such as their search frequency in history and popularity among media coverage. For instance,

for the “Apple” logo, a set of meaningful search queries may include “Apple store”, “Apple event

2019”, “Apple new product 2019”, etc.



www.manaraa.com

64

Figure 7.4: 173 logo classes we selected in the Logo173 dataset.

Figure 7.5: Two different kinds of logo images. Left: “headshot logo”; Right: “logo in natural

scene”.
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Logo Class. A total of 173 logo classes are selected in the Logo173 dataset (Fig.7.4). We

choose these logos largely based on their popularity. One thing to note is that our training pipeline

allows new logos to be added to the system conveniently which makes expanding the number of

logo classes easy.

Image Source. Weakly-labelled images can come from search engines such as Google and

Bing, or from social media networks e.g., Facebook, Instagram and Twitter. There is a clear trade-

off between image scene complexity and logo instance richness. In general, images containing logos

in social media have a more natural and complex scene. Such images are captured and uploaded

by individual users (including amateur and professional photographers) and tend to cover a variety

of scenes. But some logo instances are difficult to see in social media if they are not popular in

daily topics of users.

Among all social media, we found that Twitter is the only platform that provides an API to

download images in batches. Unlike Su et al [89], we did not choose Twitter as our image source

for the following two reasons. Firstly, we found that images on twitter are more likely to be noisy,

which means the images obtained by logo search queries are less likely to contain relevant logos. It

would require us to download a huge amount of image data to get enough logo instances. Secondly,

as discussed earlier, some logo classes can be very sparse and we are not able to obtain even the

minimum number of images required for training a certain logo class, and hence we need to deal

with unbalanced data. Therefore we use Google Image Search to collect weakly labelled data, and

by simple scripts we were able to scrape adequate candidate images using meaningful search queries

mentioned above. This was followed by a de-duplication step where we removed duplicated images

by computing their simple feature vectors which contain basic statistics such as image size, mean

pixel values in three channels and pixel values at a set of predefined positions.

7.2 semi-automatic data augmentation and training pipeline

In this work, our goal is to train a multi-class logo detection model when initially only weakly-

labelled data is available. The core step is to efficiently convert the weakly-labelled data into
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Figure 7.6: Illustration of generating synthetic data. The “UPS” icon is transformed in different

ways and pasted to various kinds of background images.

well-labelled (object-wise) data such that it can be trained using state-of-the-art object-detection

methods. In a nutshell, our pipeline is designed to firstly generate well-labelled training data and

secondly train a logo detector with the obtained data.

The training data is obtained independently from each single logo class through an iterative

process where we incrementally enhance the model capability for each logo. This is achieved by

training an initial model using synthetic data, followed by iteratively self-mining (from weak-labelled

data) and updating the current model.

Specifically, in our implementation for logo detection, we choose Faster-RCNN [78] for its ex-

cellent performance for ordinary object detection tasks (if the object is not too small) [114]. One

can also use other alternatives such as SSD [56] and YOLO [77]. Next, we introduce the pipeline

as following and it is summarized in detail in Algorithm 6.

7.2.1 Initial training with synthetic data

Using synthetic data for deep-neural-network training has been widely applied for many appli-

cations. In all the tasks, synthetic data is generated in a way such that it is representative and that

the gap (in terms of image style, object style) between synthetic data and real data is minimized.

Apparently, synthetic data generated for logo detection has a smaller object style gap than

that for general object detection. This is due to the simple nature that logos has smaller in-class

variations compared to other objects such as animals. It is usually common and valid to assume

that most logos are in rigid 2D shapes and have less deformation variations like animal images (see



www.manaraa.com

67

Figure 7.7: Comparison of logos and cats in images. First row: “pepsi” logos in three different

images; Second row: cats in three different images. Logos are less variant than animals.

Fig.7.7). For this reason, we generate our synthetic training data by simple superimposing of logos

on images.

Particularly, we generate synthetic training data by overlaying a standard logo image onto

randomly selected background images after various kinds of image transformation as illustrated in

Fig.7.6. Note that there are other methods to generate synthetic data [68, 29, 32]. Since our goal

is to eventually collect a large number of real image data which will replace the synthetic data, we

believe a simple superimposing should suffice for model initialization. We leave the full comparison

of all synthetic methods to a future follow-up work.

For each logo class, we generated 200 synthetic images with the bounding box information. A

binary logo detector for each class was trained using Faster-RCNN with the synthetic data.

7.2.2 Iteratively self-mining and updating the current model

With each initial logo detector, we run inference on the weakly-labelled images and selected

high-score results which are larger than a pre-defined threshold (we used 0.9) and marked them as

new training data. The process is shown in Fig.7.8.

The newly-obtained training data is added to the training set to replace an equal number of

synthetic images. The model is re-trained using the updated training data. We iteratively perform
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Figure 7.8: Illustration of training using synthetic data. We ran inference on the weakly-labelled

images and selected high-score results which are larger than a pre-defined threshold and mark them

as new training data.

self-mining (discovering new training data) and updating the current model until the training set

for each logo class consists of only real images. We keep doing this until each training set contains

more than 1000 real images. These real images with object-level bounding box information are

used for training the final multi-class logo detector.

7.2.3 Curation (optional): removing false-positives

The key to the data augmentation and training pipeline is accurately self-selecting trustworthy

images from the weakly-labelled data at each iteration. Although at each step the inference results

with highest detection scores are picked, they are not guaranteed to be all correct. This may cause

the so-called model drift effect – the errors in the model prediction is propagated through the

iterations and eventually introduces bias to the multi-class logo detector.

The errors that are accumulated through all steps are mainly caused by false-positives in the

logo detection case. In the pipeline, the false-positives are treated as correct training samples for

retraining the model. The most effective way to avoid this from happening is to manually curate the
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Figure 7.9: User Interface for curation. We display the high-score detection results for “Starbucks”

in an image array, where each patch corresponds to a bounding-box in the detection results. The

outliers are removed by simple-clicks.

Figure 7.10: Example of false negative. The four bounding-boxes are successful detections while

there is a false-negative at top-left corner.
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result and filter out the false-positives. Human curation may sound daunting, but it is effortless in

this case since it simply requires to pick a few outliers from a large group of correct data. As shown

in Fig.7.9, we display the high-score detection results for “Starbucks” in an image array, where

each patch corresponds to a bounding-box in the detection results. It can been seen that selecting

non-Starbucks patches from the array is an easy task - in the User-Interface that we designed, they

are deleted by simple clicks.

Another detection error that is not easily noticeable is a false negative – the logos that the

detector fails to detect. In Fig.7.10, the detector is able to detect four logos but misses the top-left

one and these four bounding-boxes are sent to training set for model re-training and updating. The

potential problem in this case is that the undetected logo at the top-left corner – without a logo

label, can be marked as a negative sample by the Region Proposal Network in Faster-RCNN. We

assume such false negatives rarely occur in a single image and hence ignore their effects.

7.2.4 Training the multi-class logo detector

Once collecting the real training data is finished for each logo class, we start training the multi-

class logo detector using a standard Faster-RCNN model.

7.3 Experiments

We compared our semi-automatic data augmentation and training pipeline with a similar scheme

SLST [89]. Both pipelines were implemented with Faster-RCNN as the core detection algorithm.

In this work, we aim to propose an efficient data augmentation and training pipeline instead of

developing a new object detection algorithm. Therefore, we do not aim to compare the performance

of different object detection algorithms for logo data. We only implemented Faster-RCNN for this

part.
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Algorithm 6 Training Pipeline for Logo Detection

Input: n standard logo icons, weakly-labelled images for each logo class, background images for

generating synthetic training data

Initialization: For each logo class i, generate 200 synthetic images by randomly superimposing

the logo icon to any background images. Let Ti denote the training set for logo class i, and

Ti = Si ∪Ri where Si and Ri are set of synthetic and real image data, respectively. |Si| = 200.

Step 1: For each logo class i:

Initial Training: Train a model F (0)
i using data from Si

while |Ti| < 1000 do

1. Inference using F (iter)
i on weakly-labelled dataset Wi: W

(iter)
top = F (iter)

i (Wi);

2. Update the training set:

Ri ← Ri ∪W (iter)
top ;

Wi ←Wi \W (iter)
top ;

Keep removing same number of images from Si until it is empty

3. Re-train model with new data:

F (iter+1)
i ← F (iter)

i

Here W
(iter)
top = F (iter)

i (Wi) means selecting the top detection results using detector F (iter)
i and we

use a threshold of 0.9 for detection scores; Ri∪W (iter)
top and Wi \W (iter)

top are set union and set minus

operations to add new data to the training set and remove images from the weakly-labelled image

pool.

Step 2: Training multi-class logo detector

With data T1, T2, · · · , Tn (all consist of real images), train a multi-class logo detector using faster-

RCNN model

Output: A multi-class logo detector



www.manaraa.com

72

Figure 7.11: A single receptive field such as that of the RPN cannot match the object scale vari-

ability. This is also an example where our detector was not able to detect the logo due to small

size but was later succeeded after doing up-sampling.

Table 7.1: Performance comparison of different pipelines

Model mAP

SLST 0.69

our pipeline 0.74

our pipeline with curation 0.81

Table 7.2: Class-wise mAP (%) in different iterations. Iter0 refers to the initial model trained using

synthetic data. Values in parentheses denote mAPs obtained with the curation step.

starbucks ups mcdonalds kfc pepsi bmw benz walmart google

iter0 25.44 23.11 22.31 20.13 19.32 20.15 23.13 24.11 18.22

iter1 32.11 (38.1) 29.87 (40.31) 30.76 (41.22) 28.54 (35.22) 27.43 (38.41) 29.18 (37.23) 30.33 (35.81) 34.76 (42.39) 23.89 (33.99)

iter2 45.39 (60.77) 48.92 (59.87) 51.77 (66.21) 44.39 (58.73) 43.98 (62.38) 37.58 (58.21) 42.31 (57.77) 40.69 (60.13) 38.44 (54.34)

Performance Metrics We use mean Average Precision (mAP) to evaluate the detection

performance. By convention we apply the 0.5 IoU rule - a detection is considered correct if the

Intersection over Union (IoU) between the detection and groundtrue exceeds 50%.

Implementation details For initial training with synthetic data, we generated 200 training

images per class. In all training tasks using Faster-RCNN, we set the learning rate to be 0.0001. We
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Table 7.3: mAPs on different testing groups based on logo scales. We split our testing set based on

logo size scales. Specifically we computed the logo-to-image size ratio for each image and divided

the images into three different groups: 0 − 0.2 (small), 0.2 − 0.4 (medium) and 0.4 − 0.8 (large).

We summarize different mAPs for each image group in column 2. In column 3, we summarize the

results after applying the enhancement technique based on up-sampling.

Logo size ratio mAP (curation) mAP (curation + enhancement)

0 - 0.2 0.32 0.68

0.2 - 0.4 0.85 0.87

0.4 -0.8 0.77 0.77

used the ResNet-101 architecture [34] and the network was pre-trained on the COCO dataset [52].

The comparison was on a testing set that contains 3460 images and were independently labelled.

We summarized the detection performance in TABLE.7.3. Particularly, we compared two ver-

sions of our pipeline - with / without the curation step to remove the false-positives. It can be

clearly seen that adding the curation step improves logo detection performance since model drift

can be prevented to some extent. In Table.7.2, we tracked the class-wise mAPs along iterations

and the data shows that the multiple iterations help improve the model capacity.

Note that our baseline outperforms SLST and we believe one of the reasons is the difficulty

in transforming the multi-class logo detection model trained from synthetic data to real-world

images. Intuitively, with pure synthetic data only, in order to well adapt the initial model to real-

world images, one would prefer a group of binary-class detectors such that the gap between real

data and synthetic data can be absorbed into each class instead of aggregating in a cumbersome

multi-class detector. Moreover, along the iterations, there are more cross-class false-positives when

using a multi-class detector, and such error can be accumulated and cause more severe model drift.

Another notable phenomenon we observed is the unsatisfactory detection performance on small

logos, which has been recognized as a major drawback of faster-RCNN. The RPN in faster-RCNN

generates region proposals by sliding a fixed set of filters over a fixed set of convolutional feature

maps which creates an inconsistency between different sizes of objects (logos)[6]. The logo sizes are

variable while the filter receptive fields are fixed. As shown in Fig.7.11, a fixed receptive field is not

able to cover the multiple scales where logos appear in natural scenes. To understand the detection
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performance on logos in different size scales, we split our testing set based on logo size scales and

compute the mAPs for each group respectively and the results are summarized in Table.7.3 (column

2). As can be seen in the table, the performance was pegged back due to small logo sizes.

A simple method to handle this is by up-sampling the input image both during training and

testing [6]. In our loops for data-collection and re-training, we tried cropping (zooming) small-sized

logo images and only took local regions into training. This also avoids the logo feature distortion

introduced by image reshape in Faster-RCNN. In detection, we tried pre-segmenting the input image

into 4 × 4 sub-images (with overlaps) and ran detection on the 4+1 images. These two extra steps

were able to compensate the degradation caused by small logo size as show in Table.7.3 (column 3).

There are other recent works focused on small-sized object detection problems [85, 37, 20]. Since

our goal in this work is to show the efficiency of the pipeline that incorporates data-augmentation

and training, it is out of our scope to compare all detection algorithms.

7.4 Conclusion

We present a scalable data augmentation and training pipeline for logo detection. The pipeline

explores the weakly-labelled data from image search engines and is able to save the effort for

exhaustive manual labelling. With the human curation step, our pipeline is only semi-automatic,

but it considers both reducing annotation work and avoiding model drift. Moreover, we construct

a large logo detection benchmarking dataset Logo173 with the above mentioned semi-automatic

manner.

In our future work, we desire to replace the human curation step with other unsupervised

machine learning techniques to make it a fully-automatic pipeline. In Figure 7.9 we show the API

used for picking the outliers. In deed, picking the outliers from the image-patch matrix can be

considered as a robust-PCA problem, after each patch is aligned properly [69]. An interesting

idea is to apply prac-ReProCS to it and kick out the outliers as a sparse signal, such that the

data-augmentation and training pipeline is fully-automatic.
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APPENDIX. DETAILED DISCUSSION OF WHY REPROCS WORKS

Define the subspace estimation error as

SE(P, P̂ ) := ‖(I − P̂ P̂ ′)P‖2

where both P and P̂ are basis matrices. Notice that this quantity is always between zero and one.

It is equal to zero when range(P̂ ) contains range(P ) and it is equal to one if P̂ ′Pi = 0 for at least

one column of P .

Recall that for t ∈ [tj , tj+1 − 1], Pt = [P(j−1)Rj \ P(j),old, P(j),new]. Thus, Lt can be rewritten as

Lt = P(j−1)at,∗ + P(j),newat,new

where at,new := P ′(j),newLt and at,∗ := P ′(j−1)Lt.

Let c := cmax and rj := r0 + jc. We explain here the key idea of why ReProCS works [74, 1].

Assume the following hold besides the assumptions of chapter 3.

1. Subspace change is detected immediately, i.e. t̂j = tj and cj,new is known.

2. Pick a ζ � 1. Assume that ‖Lt‖2 ≤ γ∗ for a γ∗ that satisfies γ∗ ≤ 1/
√
rJζ. Since ζ is very

small, γ∗ can be very large.

3. Assume that (tj+1 − tj) ≥ Kα for a K as defined below.

4. Assume the following model on the gradual increase of at,new: for t ∈ [tj+(k−1)α, tj+kα−1],

‖at,new‖2 ≤ vk−1γnew for a 1 < v ≤ 1.2 and γnew � γ∗.

5. Assume that projection PCA “works” i.e. its estimates satisfy SE(P(j),new, P̂(j),new,k−1) ≤

0.6k−1 + 0.4cζ. The proof of this statement is long and complicated and is given in [74, 1].

6. Assume that projection PCA is done K times with K chosen so that 0.6K−1 + 0.4cζ ≤ cζ.
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Assume that at t = tj − 1, SE(P(j−1), P̂(j−1)) ≤ rj−1ζ � 1. We will argue below that

SE(P(j), P̂(j)) ≤ rjζ. Since rj ≤ r0 + Jc is small, this error is always small and bounded.

First consider a t ∈ [tj , tj + α). At this time, P̂t = P̂(j−1). Thus,

‖βt‖2 = ‖(I − P̂t−1P̂
′
t−1)Lt‖2

≤SE(P(j−1), P̂(j−1))‖at,∗‖2 + ‖at,new‖2

≤ (rj−1ζ)γ∗ + γnew

≤
√
ζ + γnew (.1)

By construction,
√
ζ is very small and hence the second term in the bound is the dominant one.

By the slow subspace assumption γnew � ‖St‖2. Recall that βt is the “noise” seen by the sparse

recovery step. The above shows that this noise is small compared to ‖St‖2. Moreover, using Lemma

3.2.2 and simple arguments [see [74, Lemma 6.6]], it can be shown that

δs(Φt) ≤ κ2
∗ + rj−1ζ

is small. These two facts along with any RIP-based result for `1 minimization, e.g. [7], ensure that

St is recovered accurately in this step. If the smallest nonzero entry of St is large enough, it is

possible get a support threshold ω that ensures exact support recovery. Then, the LS step gives

a very accurate final estimate of St and it allows us to get an exact expression for et := St − Ŝt.

Since L̂t = Mt − Ŝt, this means that Lt is also recovered accurately and et = L̂t − Lt. This is then

used to argue that p-PCA at t = tj + α− 1 “works”.

Next consider t ∈ [tj + (k − 1)α, tj + kα− 1]. At this time, P̂t = [P̂(j−1), P̂(j),new,k−1]. Then, it

is easy to see that

‖βt‖2 = ‖(I − P̂t−1P̂
′
t−1)Lt‖2

≤SE(P(j−1), P̂(j−1))‖at,∗‖2 + SE(P(j),new, P̂(j),new,k−1)‖at,new‖2

≤ (rj−1ζ) γ∗ + (0.6k−1 + 0.4cζ) vk−1γnew

≤
√
ζ + 0.72k−1γnew (.2)
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Ignoring the first term, in this interval, ‖βt‖2 ≤ 0.72k−1γnew, i.e. the noise seen by the sparse

recovery step decreases exponentially with every p-PCA step. This, along with a bound on δs(Φt)

(this bound needs a more complicated argument than that for k = 1, see [74, Lemma 6.6]), ensures

that the recovery error of St, and hence also of Lt = Mt−St, decreases roughly exponentially with

k. This is then used to argue that the p-PCA error also decays roughly exponentially with k.

Finally for t ∈ [tj+Kα, tj+1−1], because of the choice ofK, we have that SE(P(j),new, P̂(j),new,K) ≤

cζ. At this time, we set P̂(j) = [P̂(j)−1, P̂(j),new,K ]. Thus, SE(P(j), P̂(j)) ≤ SE(P(j−1), P̂(j)−1) +

SE(P(j),new, P̂(j),new,K) ≤ rj−1ζ + cζ = rjζ.
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